
13

.NET Objects
To match wi’ Scotia’s noblest speech yon orchestra sublime

Whaurto-uplifted like the Just—the tail-rods mark the time.

The Crank-throws give the double-bass; the feed-pump sobs an’ heaves:

An’ now the main eccentrics start their quarrel on the sheaves.

Her time, her own appointed time, the rocking link-head bides,

Till-hear that note?—the rod’s return whings glimmerin’ through 

the guides.

—Rudyard Kipling, writing about the vastly different types of components

that any large application needs to work together

harmoniously,“McAndrew’s Hymn,” 1894.

Problem Background
Good code is hard to 
write.

Good code is hard to write. It’s never been easy, and the problems that devel-
opers need to solve to produce useful applications grow ever more complex
in today’s distributed, heterogeneous Internet world. I sometimes catch
myself longing for the good old days, when software development meant
writing an input processor that read characters directly from the keyboard
and parsed them into recognizable tokens to be fed to a command processor.
It doesn’t work that way any more. Here are several of the difficult problems
dogging the efforts of developers today.

We need all system fea-
tures to be available to 
programmers in any 
language.

First, we have the ongoing controversy over which programming lan-
guage to use. While in theory any language can produce binary code that
takes advantage of the entire operating system, it’s all too common to hear
something like, “Hey, you’re using COBOL, so you can’t have automatic

C02619182.fm  Page 13  Thursday, March 6, 2003  2:31 PM



14 Introducing Microsoft .NET, Third Edition

memory management. Get yourself a real language, kid,” or “Visual Basic
doesn’t do uncouth things like threads” [nose in air]. We’d like the choice of
language to be dictated by how well it matches the problem domain, not by
how well it matches the system features. We don’t want any more second-
class citizens. What’s probably going to be the downfall of the Java language
is that you can only use its cool features from Java. I have no patience for
anyone who insists that I embrace the One True Programming Language;
instead, I believe that salvation ought to be available to believers of any
development creed.

COM helped us develop 
applications by assem-
bling purchased compo-
nents; we didn’t have to 
write everything from 
scratch.

With the release of COM in 1993, Microsoft Windows developers found
that they didn’t have to write all of their application’s code from scratch. COM
allowed a client to call functions on a server at a binary level, without need-
ing to know the server’s source code implementation. Using COM meant that
we could buy components—say, a calendar control—from third-party ven-
dors and wire them into our apps by writing a relatively thin layer of “glue”
code to express our business logic. We got faster application development
and better functionality than we could have written ourselves, and the third-
parties got a much higher unit volume over which to amortize their develop-
ment efforts. Microsoft also used COM to provide access to operating system
functionality, such as queuing and transactions, again making apps faster and
easier to write. It was a good idea, and the software gods smiled. For a while.

COM only went so far. We 
need to abstract away the 
differences in implemen-
tations.

As with most software architectures, COM helped to a certain point, but
its internal structure has now become an obstacle rather than a help. COM
has two main problems: First, it requires a substantial infrastructure from each
application; for example, class factories and interface marshalers. Every
development environment has to supply its own implementation of these
mechanisms, so they’re all slightly different and not as compatible as we’d
like. Second, COM operates by keeping client and server at arm’s length.
They deal with each other through external interfaces, not through sharing
their internal implementations. You might say that a COM client and server
only make love by telephone. Unfortunately, everyone’s implementation of a
COM interface differs in sneaky and hard-to-reconcile ways. For example,
strings are implemented differently in C++ than they are in Microsoft Visual
Basic, and both are implemented differently than strings in Java. Passing a
string from a COM server written in Visual Basic to a COM client written in
C++ requires work on someone’s part to iron out the differences, usually the
C++ application because Visual Basic’s implementation isn’t negotiable. Pro-
grammers spend an inordinate amount of time ironing out these differences.
That wastes valuable programmer time (and annoys programmers, making
them change jobs to do something more fun), and you never know when you
have it right, when any COM client regardless of implementation can use your

C02619182.fm  Page 14  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 15

server. We need to iron out differences in implementation, allowing our apps
to interoperate on a more intimate basis.

We’d like our code to be 
able to run on a variety of 
platforms.

The Web is nothing if not heterogeneous. That’s the dominant feature
that any successful software architecture has to deal with. Much as Microsoft
would like to see Windows PCs everywhere, they’re starting to realize that it
isn’t going to happen. We’d like to be able to write software once and run it
on a variety of platforms. That’s what Java promised but hasn’t quite deliv-
ered. (Spare me the righteous e-mails disagreeing with that statement; this is
MY book.) Even if we can’t make that approach work completely today, we’d
like our software architecture to allow platform interoperability to evolve in
the future.

We need automatic mem-
ory management to pre-
vent leaks.

One of the major causes of program failure today, particularly in appli-
cations that run for a long time, is memory leaks. A programmer allocates a
block of memory from the operating system, intending to free it later, but for-
gets and allocates another block. The first block of memory is said to be
“leaked away,” as it can’t be recovered for later use. If your app runs long
enough, these leaks accumulate and the app runs out of memory. That’s not
a big deal in programs like Notepad that a user runs for a few minutes and
then shuts down, but it’s fatal in apps like Web servers that are supposed to
run continuously. You’d think we could remember to free all of our memory
allocations, but they often get lost in complex program logic. Like an auto-
matic seat belt that passengers couldn’t forget to buckle, we’d like a mecha-
nism that would prevent memory leaks in some way that we couldn’t forget
to use.

We need help with man-
aging different versions of 
the same software pack-
age.

When you ship a product, it’s never perfect. (I know, yours are, but
you’ll have to agree that no one else’s are, right? Besides, with no updates,
how would you get more money from your existing customers?) So some
time after you ship the first version, you ship an updated version of the prod-
uct with new features and bug fixes for the old ones. Now the fun starts. No
matter how hard you try to make your new release backward compatible
with all of its old clients, this is very hard to do and essentially impossible to
prove that you have done it. We’d really like some standardized mechanism
whereby servers can publish the version level they contain. We’d like this
mechanism to enable clients to read the version level of available servers and
pick one with which they are compatible or identify exactly what they are
missing if they can’t.

We’d like object-oriented 
programming features to 
be available in and 
between all programming 
languages.

Object-oriented programming, using such techniques as classes and
inheritance, has permeated the software development world. That’s about the
only way you can manage programming efforts above a certain, not-very-
high level of complexity. Unfortunately, every programming language pro-
vides a different combination of these features, naturally all incompatible,

C02619182.fm  Page 15  Thursday, March 6, 2003  2:31 PM



16 Introducing Microsoft .NET, Third Edition

which means that different languages can interoperate with each other only at
a very low level of abstraction. For example, COM does not allow a Visual
Basic programmer to use the convenient mechanism of inheritance to extend
an object written in C++. Instead, COM requires cumbersome workarounds.
We’d like object-oriented programming techniques to be available in and
between all programming languages.

For safety, we want to be 
able to restrict the opera-
tions of pieces of code we 
don’t fully trust.

The Web is fast becoming the main avenue by which users acquire soft-
ware, which leads to major security problems. While current versions of Win-
dows use digital certificates to identify the author of a piece of downloaded
code, there is currently no way to ensure that a piece of code can’t harm our
systems, say, by scrambling files. We can choose to install or not install a
downloaded component on our system, but there is no good way to restrict
its activities once it’s there. It’s an all-or-nothing decision, and we really don’t
like that. We’d like some way of setting allowed and forbidden operations for
various pieces of code and of having the operating system enforce those
restrictions. For example, we might like to say that a piece of code we’ve just
downloaded can read files but can’t write them.

We need a better way of 
organizing operating sys-
tem functions for better 
access.

The Windows operating system has grown almost unimaginably com-
plex. From its humble beginnings as a Solitaire host with just a couple of hun-
dred functions, it’s mushroomed into a behemoth FreeCell host with over
5000 separate functions. You can’t find the one you want simply by looking
at an alphabetical list; it takes too long. Programmers manage complex
projects by organizing their software into logical objects. We need a similar
method of organizing the functionality of the operating system into logically
related groups so that we have at least some chance of finding the function
we want.

Our new object model 
needs to seamlessly 
interoperate with COM, 
both as client and as 
server.

Finally, I don’t want to dump on COM too badly. It was revolutionary in
its day, and we’re going to have a lot of it with us for the foreseeable future. Just
as the first color TV sets needed to also receive the black and white broadcasts
that predominated at the time, so does whatever object model we start using
need to seamlessly interoperate with COM, both as client and as server.

It should be obvious that this long list of requirements is far more than
any application vendor can afford to develop on its own. We have reached
the limit of our potentialities. To move into the Internet world, we need a
higher power that can provide us with a world we can live in.

Solution Architecture
The solution is managed 
code, executing in the 
common language run-
time.

The .NET Framework is Microsoft’s operating system product that provides
prefabricated solutions to these programming problems. The key to the
framework is managed code. Managed code runs in an environment, called

C02619182.fm  Page 16  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 17

the common language runtime, that provides a richer and more powerful set
of services than the standard Win32 operating system, as shown in Figure 2-1.
The common language runtime environment is the higher power that we
have to turn our code over to in order to deal with the harsh, savage world
that is modern Internet programming.

f02tp01Figure 2-1 Managed execution in the common language runtime.

But with that architecture, how can the common language runtime work
with any language? Not to sound Clintonesque, but that depends on what your
definition of “language” is. Every common language runtime–compliant devel-
opment tool compiles its own source code into a standard Microsoft Interme-
diate Language (MSIL, or IL for short), as shown in Figure 2-2. Because all
development tools produce the same IL, regardless of the language in which
their source code is written, differences in implementation are gone by the
time they reach the common language runtime. No matter how it’s presented
in the source code programming language itself, every program’s internal
implementation of a string is the same as every other program’s because they
all use the System.String object within the common language runtime. The
same holds true for arrays and classes and everything else.

f02tp02Figure 2-2 Different source code programming languages are compiled
into MSIL.

Managed code

Win32 OS

Requests for existing 
features, such as opening 
a file, mediated by 
common language runtime

New common language 
runtime-only features, such 
as garbage collection

Common language 
runtime

Development  
tool, such as 
Visual Studio 

.NET
Platform-
specific code

Microsoft 
Intermediate 
Language 
(MSIL)

Source code: 
Visual Basic, 
Visual C++, 
COBOL, etc.

Just-in-time 
compiler

C02619182.fm  Page 17  Thursday, March 6, 2003  2:31 PM



18 Introducing Microsoft .NET, Third Edition

All common language 
runtime–compliant source 
code languages compile 
to the same intermediate 
language.

Any company that wants to can write a common language runtime–
compliant language. Microsoft Visual Studio .NET provides common lan-
guage runtime–compliant versions of Visual Basic, C# (pronounced C sharp),
JScript, and C++. Visual Studio 2003 has added support for J#, which compiles
Java language source code into .NET IL. Third parties are producing many
others, including APL, COBOL, and Perl.

The IL is compiled just-in-
time to run on the target 
machine.

The IL code produced by the development tool can’t run directly on any
computer. A second step is required, called just-in-time (JIT) compilation, as
shown in Figure 2-2. A tool called a just-in-time compiler, or JITter1, reads the
IL and produces actual machine code that runs on that platform. This pro-
vides .NET with a certain amount of platform independence, as each platform
can have its own JITter. Microsoft isn’t making a huge deal about just-in-time
compiling, as Sun did about Java 5 years or so ago, because this feature is still
in its infancy. No common language runtime implementations for platforms
other than Windows (98, NT4 SP6, Me, 2000, or XP for clients; 2000 or XP
Professional for servers) have currently been announced, although I expect
some will be over time. It’s probably more a strategy for covering future ver-
sions of Windows, like the forthcoming 64-bit version and now Windows XP,
than it is for covering different operating systems, like Linux.

The .NET Framework pro-
vides automatic memory 
management via garbage 
collection.

The .NET Framework provides automatic memory management, using a
mechanism called garbage collection. A program does not have to explicitly
free memory that it has allocated. The common language runtime detects
when the program is no longer using the memory and automatically recycles
it. Wish I had a maid that did that with my laundry.

The .NET Framework sup-
ports explicit standardized 
version management.

The .NET Framework finally supports versioning. Microsoft .NET pro-
vides a standardized way in which developers of servers can specify the ver-
sion that resides in a particular EXE or DLL and a standardized mechanism
that a client uses to specify which version it needs to run with. The operating
system will enforce the version requests of clients, both providing a reason-
able default set of versioning behavior and allowing a developer to override
it and specify explicit versioning behavior.

The .NET Framework 
extends rich object-
oriented programming 
features to all languages.

Because each language compiles to the same IL, all languages that sup-
port the common language runtime have the potential to support the same
set of features. While it is possible to write a common language runtime lan-
guage that does not expose this or that underlying common language runtime
feature to a programmer, I expect the brutal Darwinian jungle that is the mod-
ern software marketplace to kill off such an ill-conceived idea very quickly.
The common language runtime provides a rich set of object-oriented pro-
gramming features, such as inheritance and parameterized object construc-
tion. Don’t worry if these sound like complicated concepts—they aren’t hard

1.  Defects in this piece of software are known, of course, as jitterbugs.

C02619182.fm  Page 18  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 19

to use; they save you a lot of time and potential errors; and you’ll grow to like
both of them.

The.NET Framework 
organizes system func-
tionality into a hierarchical 
namespace.

The .NET Framework organizes operating system functionality through
the System namespace. All operating system objects, interfaces, and functions
are now organized in a hierarchical manner, so it’s much easier to find the
things you want. It also keeps your object and function names from colliding
with those of the operating system and those of other developers.

The .NET Framework 
supports code security.

The .NET Framework supports code access security. An administrator
can specify that a piece of code is allowed to perform this operation but not
that one. For example, you can allow a piece of code to read files but not write
them, and the common language runtime will enforce your specifications and
block any attempt to go outside them. This means that you can apply different
levels of trust to code from different sources, just as you apply different levels
of trust to different people that you deal with. This capability lets you run code
from the Web without worrying that it’s going to trash your system.

The .NET Framework pro-
vides seamless interoper-
ability with COM, both as 
client and as server.

Finally, the .NET Framework provides seamless interoperability with
COM, both as client and as server. The framework puts a wrapper object
around a COM object that makes the object look like a native .NET object. This
means .NET code doesn’t know or greatly care which kind of object it’s run-
ning with. On the flip side, .NET objects know how to register themselves with
an abstraction layer so that they appear to COM clients to be COM servers.

Oh Yeah? What Does It Cost?
The operating system got 
harder to write, but you 
don’t really care about 
that.

But what about Platt’s Second Law? (The amount of crap in the universe is
conserved; see Chapter 1.) If I have less crap to deal with—for example, if I
no longer have to worry about freeing memory that I’ve allocated—whose
head did that crap get dumped on because it didn’t just disappear? In the case
of .NET, it got dumped primarily on two sets of heads, namely Microsoft’s and
Intel’s. (All of my readers who work for Sun just stood up and cheered. Both
of them.) In Microsoft’s case, the operating system itself got harder to write.
An automatic garbage collection mechanism like the one in .NET is several
orders of magnitude harder to write than a simple in-out heap manager of the
type that Windows 2000 contains. Since Microsoft hopes to sell millions of
copies of .NET, they can afford to hire lots of smart programmers and engi-
neer the heck out of it. This division of labor—letting Microsoft develop infra-
structure while you worry less—makes economic sense.

The computational task 
also got harder, requiring 
more computing horse-
power.

In the case of Intel, the new .NET Framework will keep them busy pro-
ducing faster CPUs and more memory chips. Applications built on .NET will
run slower in some operations than those that aren’t, but they’ll be easier to
write and debug. Sophisticated garbage collection requires more computation
than simple heap allocation, just as an automatic seatbelt requires more parts

C02619182.fm  Page 19  Thursday, March 6, 2003  2:31 PM



20 Introducing Microsoft .NET, Third Edition

than a manual one. Plus, since garbage collection doesn’t take place as often,
your computer probably needs more memory so that your app still has
enough while objects are hanging around waiting to be garbage collected.
(Remember Grosch’s Law? Go check the end of Chapter 1 if you don’t.) But I
don’t think that the additional memory and CPU cycles a .NET program
requires are being squandered, as they are on that stupid dancing paper clip
in Microsoft Office. I think they’re being wisely invested, saving you time and
money by letting you write code faster and with fewer bugs because the
operating system is doing more of the scut work for you. An application using
a general disk operating system will never run as fast as one that programs
absolute sector and track disk head movements. But you can’t afford to do
that; it takes too long, it costs too much, and you can’t manage very much
data. You’ll spend all your time on the silly disk sectors and never get any
paying work done. Once it becomes possible to abstract away these infra-
structural problems, doing so becomes an economic necessity. If your own
memory management was working well enough, you wouldn’t be spending
your debugging time tracking memory leaks.

Simplest Example
A .NET Framework object 
sample begins here.

As I’ll do throughout this book, I’ve written the simplest example I could
think of to demonstrate the operation of the .NET Framework. You can down-
load this sample and all the other code examples in this book from http://
www.introducingmicrosoft.net. For this sample I wrote a .NET object server,
the .NET replacement for an ActiveX DLL in Visual Basic 6, and its accompa-
nying client. The server provides a single object exposing a single method,
called GetTime, that provides the current system time in the form of a string,
either with or without the seconds digits. Even though I wrote the server in
Visual Basic and the client in C#, I didn’t have to use Visual Studio. In fact, I
wrote both applications in Notepad and built them with the command line
tools provided in the .NET Framework SDK. I do show examples of using
Visual Studio .NET in other sections of this chapter. Note: You can download
a copy of the .NET Framework SDK at http://www.msdn.microsoft.com/net.

Visual Basic .NET con-
tains a number of critical 
language differences from 
Visual Basic 6.

You’ll notice when we begin looking at the code that it seems, at least
superficially, quite similar to the classic Visual Basic code you are already
familiar with. However, Microsoft made a number of important changes to the
.NET version of Visual Basic to enable it to use the .NET common language
runtime classes and interoperate correctly with the other common language
runtime languages. A full discussion of these changes is far beyond the scope
of this book, but here are two examples. The text string displayed in a button
is now stored in a property called Text (as for a TextBox) rather than in the

C02619182.fm  Page 20  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 21

Caption property used in Visual Basic 6. This change will break your existing
app’s compilation but is trivial to fix once the compiler shows it to you. Other
changes won’t break your compilation, but they can change your program’s
behavior in subtle and far-reaching ways. For example, a Visual Basic 6 object
is destroyed immediately when its reference count reaches zero, but a zero-
reference Visual Basic .NET object won’t actually be destroyed until a garbage
collection occurs, some indeterminate amount of time later. (See the discus-
sion later in this chapter.) Your app might be able to live with the new behav-
ior, or it might require a redesign. These changes mean that you cannot
simply compile your existing Visual Basic code in Visual Studio .NET and
expect it to work correctly. It will take some effort to port; probably not an
enormous amount, but more than the zero-level you were hoping for.

Note Visual Studio .NET contains an upgrade tool that runs auto-
matically when you open a Visual Basic 6 project. It flags the
changes that it detects and suggests fixes. The language has defi-
nitely gotten more powerful. If you want the cool Internet features of
.NET, you’ll probably think it’s worth the effort to switch. Even if
you’re just writing single-user desktop form applications, you may
still find the versioning support and the easier deployment and
cleanup to be worth it.

Listing 2-1 shows the code listing for my sample object server. Looking
at this code, we first see the Imports directive. This new feature of Visual
Basic .NET tells the compiler to “import the namespaces.” The term
namespace is a fancy way to refer to the description of a set of prefabricated
functionality provided by some class somewhere. It is conceptually identical
to a reference in your Visual Basic 6 project. The names following Imports tell
the engine which sets of functionality to include the references for. In this
case, Microsoft.VisualBasic is the one containing the definition of the Now
function that I use to fetch the time. If you use Visual Basic from within Visual
Studio .NET, the Microsoft.VisualBasic namespace is imported automatically
without needing an explicit Imports statement.

We next see the directive Namespace TimeComponentNS. This is the
declaration of the namespace for the component we are writing, the name
that clients will use when they want to access this component’s functionality.
I discuss namespaces later in this chapter. Again, if you are using Visual Stu-
dio .NET, this declaration is made automatically.

C02619182.fm  Page 21  Thursday, March 6, 2003  2:31 PM



22 Introducing Microsoft .NET, Third Edition

‘ Import the external Visual Basic namespace, allowing me to
‘ access the Now function by its short name.

Imports Microsoft.VisualBasic

‘ Declare the namespace that clients will use to access
‘ the classes in this component.

Namespace TimeComponentNS

‘ Declare the class(es) that this DLL will provide to a client.
‘ This is the same as Visual Basic 6.

Public Class TimeComponent

‘ Declare the function(s) that this class will provide to a client.
‘ This, too, is the same as VB6.

Public Function GetTime(ByVal ShowSeconds As Boolean) As String

‘ The formatting of dates, and the returning of values of
‘ functions, changed somewhat in Visual Basic .NET.

If (ShowSeconds = True) Then
Return Now.ToLongTimeString

Else
Return Now.ToShortTimeString

End If

End Function

End Class

End Namespace

Listing 2-1 Visual Basic code listing of simplest object server.

This section describes the 
code of my .NET object 
server.

Next come the class and function declarations, identical to Visual Basic
6. Finally, I put in the internal logic of fetching the time, formatting it into a
string and returning it to the client. These too have changed slightly. The
property Now still fetches the date, but formatting it into a string is now done
with a method of the new .NET class DateTime rather than a separate func-
tion. Also, a Visual Basic function specifies its return value using the new key-
word Return instead of the syntax used in earlier versions.

C02619182.fm  Page 22  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 23

Compiling the Visual 
Basic code produces a 
DLL containing intermedi-
ate language and meta-
data.

I next compiled my code into a DLL, named TimeComponent.dll, using
the command line tools that come with the .NET Framework SDK. Anyone
who cares to can find the command line syntax in Makecomponent.bat,
which you can download from the book’s Web site. The result may look like
a plain old DLL to you, but it’s actually very different inside. The Visual Basic
.NET compiler didn’t convert the Visual Basic code to native code; that is, to
specific instructions for the microprocessor chip inside your PC. Instead, the
DLL contains my object server’s logic expressed in MSIL (again, for Microsoft
Intermediate Language; IL for short), the intermediate language that I intro-
duced in the “Solution Architecture” section in this chapter. All common lan-
guage runtime language compilers produce this IL rather than native
processor instructions, which is how the runtime can run seamlessly with so
many different languages. The DLL also contains metadata that describes the
code to the common language runtime system. This metadata is in a runtime-
required format that describes the contents of the DLL: what classes and
methods it contains, what external objects it requires, what version of the
code it represents, and so on. Think of it as a type library on steroids. The
main difference is that a COM server could sometimes run without a type
library, whereas a .NET object server can’t even begin to think about running
without its metadata. I discuss this metadata further in the section “Assem-
blies” later in the chapter.

Visual Basic and C# 
resemble each other 
more than either commu-
nity likes to admit.

Having written my server, I next need a client to test it. To demonstrate
the fact that .NET works between different languages, I wrote this client in C#.
Rather than convert from Visual Basic 6 to Visual Basic .NET, many of my cus-
tomers are converting directly to C#.  If you look at the code in Listing 2-2,
you’ll see that it’s fairly easy to understand at this level of simplicity. In fact,
given the enhancements to Visual Basic .NET to support the common language
runtime’s object-oriented features such as inheritance (described later in this
chapter), I’ve heard programmers after a few beers describe C# as “VB with
semicolons” or occasionally “Java without Sun.” Either one of these can start a
fistfight if you say it too loudly in the wrong bar in Redmond or Sunnyvale.

Our client example starts with importing namespaces, which in C#
requires the directive using. Our sample client imports the System namespace
(described in detail later in this chapter), which contains the description of the
Console.Write function, and also imports our time component’s namespace.
Additionally, we have to explicitly tell the compiler in which DLL it will find our
component’s namespace, which we do in the compiler batch file Makecli-
ent.bat (not shown). Visual Studio provides an easy user interface for this.

C02619182.fm  Page 23  Thursday, March 6, 2003  2:31 PM



24 Introducing Microsoft .NET, Third Edition

// Import the namespaces that this program uses, thereby allowing
// us to use the short names of the functions inside them.

using System ;
using TimeComponentNS ;

class MainApp
{

// The static method “Main” is an application’s entry point.

public static void Main()
{

// Declare and create a new component of the class
// provided by the VB server we wrote.

TimeComponent tc = new TimeComponent ( ) ;

// Call the server’s GetTime method. Write its
// resulting string to a console window.

Console.Write (tc.GetTime (true)) ;
}

}

Listing 2-2 C# code listing of simplest object client.

The C# client also com-
piles to intermediate 
language.

Execution of any C# program begins in a static (shared) method called
Main. In that method, we can see that our client program uses the C# new
operator to tell the runtime engine to find the DLL containing our TimeCom-
ponent class and create an instance of it. The next line calls the object’s Get-
Time method and then uses the System namespace’s Console.Write method to
output the time string in a command line window. The C# compiler in this
case produces an EXE file. Like the server DLL, this EXE does not contain
native instructions, but instead contains intermediate language and metadata.

When I run the C# client executable, the system loader notes that the
executable is in the form of managed code and loads it into the runtime
engine. The engine notes that the EXE contains IL, so it invokes the just-in-
time compiler, or JITer. As I discussed earlier, the JITer is a system tool that
converts IL into native code for whichever processor and operating system it
runs on. Each different architecture will have its own JITer tailored to that par-
ticular system, thereby allowing one set of IL code to run on multiple types of
systems. The JITer produces native code, which the common language runt-
ime engine will begin to execute. When the client invokes the new operator to
create an object of the TimeComponent class, the common language runtime

C02619182.fm  Page 24  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 25

engine will again invoke the JITer to compile the component DLL’s IL just-in-
time and then make the call and report the results. The output is shown in
Figure 2-3.

f02tp03Figure 2-3 Console output of sample TimeClient program.

The IL is compiled just-in-
time when the client and 
its component are run.

This run-time compilation model works well for some classes of appli-
cations, such as code downloaded from the Internet for a page you just surfed
to, but not for others, say, Visual Studio, which you use all day, every day,
and update once or twice a year. Therefore, an application can specify that
JIT compilation is to be performed once, when the application is installed on
a machine, and the native code stored on the system as it is for non-.NET
applications. You do this via the command-line utility program Ngen.exe, the
native image generator, not shown in this example.

The loader finds the DLL 
requested by the client by 
looking in the client appli-
cation’s directory.

When the client used the new operator to create the object, how did the
loader know where to find the server DLL? In this case, the loader simply
looked in the same directory as the client application. This is known as a pri-
vate assembly, the simplest type of deployment model in .NET. A private
assembly can’t be referenced from outside its own directory. It supports no
version checking or any security checking. It requires no registry entries, as a
COM server would. To uninstall a private assembly, all you have to do is
delete the files, without performing any other cleanup. Obviously, this simple
case, while effective in situations like this, isn’t useful in every situation—for
example, when you want to share the same server code among multiple cli-
ents. I discuss these more complex scenarios in the section on assemblies
later in this chapter.

More on .NET Namespaces
Selecting items from a 
short alphabetical list is 
easy. It’s much harder 
when the list gets longer.

I remember programming Windows version 2.0, scanning the alphabetical list
of operating system functions (on paper, that’s how long ago this was) until I
found the one whose name seemed to promise that it would do what I

C02619182.fm  Page 25  Thursday, March 6, 2003  2:31 PM



26 Introducing Microsoft .NET, Third Edition

wanted. I’d try it, and sometimes it would work and sometimes it wouldn’t. If
it didn’t, I’d go back to scanning the list again. Listing the functions alphabet-
ically worked reasonably well on Windows 2.0, which contained only a few
hundred different functions. I could see at a glance (or two or three) every-
thing that the operating system could do for me, which gave me a fighting
chance at writing some decent, albeit limited, code.

Organizing operating system functions into one alphabetical list won’t
work with today’s 32-bit Windows. It’s enormous—over 5000 functions and
growing. I can’t scan through a list that long to find, for example, console out-
put functions; they’re scattered among far too many unrelated functions for
me to pick them out. It’s a problem for operating system designers, too. When
they want to add a new function, they have to choose a name for it that is
descriptive but that doesn’t conflict with any of the other function names
already implemented. Application programmers also need to make sure that
their global function names don’t conflict with operating system functions.
The signal-to-noise ratio of this approach gets lower as the list of functions
gets longer, and it’s approaching absolute zero today. We say that the
namespace, the set of names within which a particular name needs to be
unique, has gotten too large.

The best way to handle 
large lists is to break them 
down into smaller logical 
groups.

The way to handle large lists is to break them down into smaller sublists
that you can more easily digest. The classic example of this is the Start menu
in Windows. If every application on your entire computer were listed on one
gigantic menu, you’d never be able to find the one that you wanted. Instead,
the Start menu provides a relatively short (10 or so) list of groups, easy to
scan and pick from. Each group contains a list of logical subgroups, nested as
deeply as you feel is cost-effective, eventually terminating in a short list of
actual applications. By the time you pick the application you want, you’ve
looked at maybe 50 different choices, rarely more than a dozen or so at a
time. Think how much easier this is compared to selecting the one applica-
tion you want out of the thousand or so installed on most computers.

.NET provides the con-
cept of a namespace, a 
logical division within 
which a name needs to be 
unique.

The .NET Framework provides a better way of organizing operating sys-
tem functions and objects. This same mechanism keeps the names of func-
tions and objects that you write from interfering with the names of objects
and functions written by other developers. It uses the concept of a
namespace, which is a logical subdivision of software functionality within
which all names must be unique. It’s not a new concept; object-oriented lan-
guages have used it for decades. But its use in .NET is the first time I know of
that an entire operating system’s functionality has been organized in this way.

All.NET common lan-
guage runtime objects 
and functions live within 
the System namespace.

All .NET common language runtime objects and functions are part of a
namespace called System. When you look them up in the documentation,
you’ll find that all names begin with the characters “System.” We say that all

C02619182.fm  Page 26  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 27

the objects and functions whose names begin this way “belong to the System
namespace.” The System namespace is naturally quite large, as it contains the
names of all functional elements of a rich operating system. It is therefore
subdivided into a number of subordinate namespaces—for example, Sys-
tem.Console, which contains all the functions dealing with input and output
on a console window. Some of these subnamespaces contain their own sub-
subnamespaces, and so on down the line until the developers got tired of it.
The fully qualified name of a function, sometimes called the qualified name
or q-name, is the name of the function preceded by its full namespace loca-
tion, also known as a qualifier. For example, System.Console.Write is the fully
qualified name of the system function that writes output to a console win-
dow. You can call a function by means of its fully qualified name from any-
where in your code.

The System namespace 
is implemented in several 
separate DLLs. You have 
to be sure that your devel-
opment tools know to 
include all the ones you 
need.

The System namespace is very large. Consequently, it is implemented in
several separate DLLs. Just because a function or an object is part of the Sys-
tem namespace does not necessarily mean that your editor, compiler, and
linker will automatically be able to find it. You generally have to tell your
development tools which of the System namespace DLLs you want to include
when building a project. For example, when I build .NET components in
Visual Studio, I often like them to pop up message boxes during debugging.
The MessageBox object is part of the System.Windows.Forms namespace,
which is implemented in System.Windows.Forms.dll. Visual Studio does not
automatically include this DLL in its reference list when I create a component
library project, probably because its authors figured that components would
work behind the scenes and not interact with the user. That’s generally true in
production. To gain access to the MessageBox object during debugging, I
have to explicitly add that reference to my project.

Importing a namespace 
allows you to use short 
names when calling a 
function within that 
namespace.

This organization of functions into logical groups is very handy for find-
ing the one you want with a minimum of fuss. The only drawback is that fully
qualified names can get very long. For example, the function System.Run-
time.InteropServices.Marshal.ReleaseComObject is used for releasing a speci-
fied COM object immediately without performing a full garbage collection.
(See the section “.NET Memory Management” for an explanation of the latter.)
Most .NET applications won’t use this function at all, but the ones that do will
probably use it in many places. Typing this whole thing in every time you call
it could get very tedious very quickly. You can see that it barely fits on one
line of this book. My wife does not address me as “David Samuel Platt, son of
Benjamin, son of Joseph” unless she is exceptionally angry, a state she is inca-
pable of occupying for very long. Therefore, just as people address their most
intimate relations by their first names, the common language runtime allows
you to import a namespace, as shown earlier in the programming examples

C02619182.fm  Page 27  Thursday, March 6, 2003  2:31 PM



28 Introducing Microsoft .NET, Third Edition

in Listings 2-1 and 2-2. When you import a namespace, you’re telling your
compiler that you use the functions in that namespace so often that you want
to be on a first-name basis with them. Importing a namespace is done in
Visual Basic by using the keyword Imports, and in C# via the keyword using.
For example, in Listing 2-2, I imported the namespace System, which allowed
me to write to the console by calling Console.Write. If I hadn’t imported the
System namespace, I would have had to use the fully qualified name Sys-
tem.Console.Write. Choosing which namespaces to import is entirely a matter
of your own convenience and has no effect on the final product (IL always
uses full names) other than allowing you to organize your own thought pro-
cesses so as to produce your best output. Since the whole point of using sep-
arate namespaces is to separate functions with the same name to prevent
conflicts, I’d suggest that you not import them all at the same time.  Instead,
I strongly urge you to pick a consistent set of rules for choosing which
namespaces to import and follow it throughout your entire project.

Your own code will also 
live in a namespace, with 
a name you define.

When you write a .NET object server, you specify the name of the
namespace in which your code lives. This is done via the Namespace direc-
tive, as shown in Listing 2-1. The namespace will often be the same as the
name of the file in which the code lives, but it doesn’t have to be. You can put
more than one namespace in the same file, or you can spread one namespace
among multiple files. Visual Studio .NET or other development environments
will often automatically assign a namespace to your project. But how do you
know that your namespace won’t conflict with the namespace chosen by
another vendor for a different component? That’s what assemblies are for,
which is our next topic of conversation.

Tips from the Trenches
A number of my customers report that they’re happy using the fol-
lowing rule: If you refer to a namespace three or more times within
a source code file, import that namespace. They find it easy to
remember and follow, and they like the familiarity it engenders.
On the other hand, when I’m writing sample code, I often don’t
import any namespaces other than System, using fully qualified
names at all times to emphasize exactly which part of the .NET sys-
tem a particular object belongs to.

C02619182.fm  Page 28  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 29

Assemblies
.NET makes extensive 
use of a new packaging 
unit called an assembly.

The .NET Framework makes extensive use of assemblies for .NET code,
resources, and metadata. All code that the .NET common language runtime
executes must reside in an assembly. In addition, all security, namespace res-
olution, and versioning features work on a per-assembly basis. Since assem-
blies are used so often and for so many different things, I need to discuss
assemblies in some detail.

Concept of an Assembly
An assembly is a logical collection of one or more EXE or DLL files containing
an application’s code and resources. An assembly also contains a manifest,
which is a metadata description of the code and resources “inside” the assem-
bly. (I’ll explain those quotes in a second.) An assembly can be, and often is,
a single file, either an EXE or a DLL, as shown in Figure 2-4.

Our simple example pro-
duced two single-file 
assemblies.

When we built the simple example of a time server earlier in this chap-
ter, the DLL that our compiler produced was actually a single-file assembly,
and the EXE client application that we built in that example was another one.
When you use tools such as Visual Studio .NET, each project will most likely
correspond to a single assembly.

f02tp04Figure 2-4 Single-file and multifile assemblies.

An assembly can also be 
a logical collection of 
more than one file.

Although an assembly often resides in a single file, it also can be, and
often is, a logical, not a physical, collection of more than one file residing in
the same directory, also shown in Figure 2-4. The manifest specifying the files

A single-file assembly

manifest

boo.dll

A multifile assembly

moo.dll graphic.jpg logo.bmp

manifest

Types of Assemblies

C02619182.fm  Page 29  Thursday, March 6, 2003  2:31 PM



30 Introducing Microsoft .NET, Third Edition

that make up the assembly can reside in one of the code-containing EXEs or
DLLs of the assembly, or it can live in a separate EXE or DLL that contains
nothing but the manifest. When dealing with a multifile assembly, you must
remember that the files are not tied together by the file system in any way. It
is entirely up to you to ensure that the files called out in the manifest are actu-
ally present when the loader comes looking for them. The only thing that
makes them part of the assembly is that they are mentioned in the manifest.
In this case, the term assembly, with its connotation of metal parts bolted
together, is not the best term. Perhaps “roster” might be a better one. That’s
why I put quotes around the term “inside” the assembly a few paragraphs
ago. You add and remove files from a multifile assembly using the command
line SDK utility program AL.exe, the Microsoft Assembly Linker.

You can view an assem-
bly’s manifest with 
ILDASM.exe

You can view the manifest of an assembly using the IL Disassembler
(ILDASM.exe). Figure 2-5 shows the manifest of our time component. You
can see that it lists the external assemblies on which this assembly depends.
In this case, we depend on mscorlib.dll, the main .NET common language
runtime DLL, and on an assembly called Microsoft.VisualBasic, which con-
tains Visual Basic’s internal functions such as Now. It also lists the assembly
names that we provide to the world, in this case, TimeComponent.

f02tp05Figure 2-5 Assembly manifest of our sample time component.

In addition to the code objects exposed by and required by the assembly,
the manifest also contains information that describes the assembly itself. For
example, it contains the assembly’s version information, expressed in a stan-
dardized format described later in this section. It can also describe the culture
(fancy name for human language and sublanguage, say, Australian English) for

C02619182.fm  Page 30  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 31

which the assembly is written. In the case of a shared assembly, of which more
anon, the manifest also contains a public cryptographic key, which is used to
ensure that the assembly can be distinguished from all other assemblies
regardless of its filename. You can even add your own custom attributes to the
manifest, which the common language runtime will ignore, but which your
own applications can read and use. You set manifest attributes with the
Assembly Linker mentioned previously or with Visual Studio.

Assemblies and Deployment
You need to think carefully 
about whether your 
assemblies should be 
private or public.

The central question in dividing your code among assemblies is whether the
code inside the assembly is intended solely for your own application’s use or
will be shared with any other application that wants it. Microsoft .NET sup-
ports both options, but it requires more footwork in the latter case. In the
case of code that you write for your own applications, say, the calculation
engine for a complex financial instrument, you’d probably want to make the
assembly private. On the other hand, a general utility object that could rea-
sonably be used by many applications—a file compression engine, for exam-
ple—might be more widely used if you make it shared.

Assemblies can be pri-
vate to an application, 
which simplifies your life 
in certain cases.

Suppose you want your assemblies to be private. The .NET model
couldn’t be simpler. In fact, that’s exactly what I did in the simplest example
shown previously. You just build a simple DLL assembly, and copy it to the
directory of the client assembly that uses it or to a subdirectory of that client.
You don’t have to make any entries in the system registry or Active Directory
as you had to do when using COM components. None of the code will
change unless you change it, so you will never encounter the all-too-familiar
situation in which a shared DLL changes versions up or down and your app
breaks for no apparent reason.

However, sometimes you 
want the code in assem-
blies to be shared.

The obvious problem with this approach is the proliferation of assem-
blies, which was the problem DLLs were originally created to solve back in
Windows 1.0. If every application that uses, say, a text box, needs its own
copy of the DLL containing it, you’ll have assemblies breeding like bacteria all
over your computer. Jeffrey Richter argued (in MSDN Magazine, March 2001)
that this isn’t a problem. With 40 gigabyte hard drives selling for under $200
(then; today for $200 you can get 200 GB), everyone can afford all the disk
space they need, so most assemblies should be private; that way your appli-
cation will never break from someone else messing with shared code. That’s
like an emergency room doctor saying that the world would be a far better
place if people didn’t drink to excess or take illegal drugs. They’re both abso-
lutely right, but neither’s vision is going to happen any time soon in the real
world. Richter’s idea is practical for developers, who usually get big, fast PCs,

C02619182.fm  Page 31  Thursday, March 6, 2003  2:31 PM



32 Introducing Microsoft .NET, Third Edition

but a customer with a large installed base of two-year-old PCs that it can’t
junk or justify upgrading at that point in its budget cycle isn’t going to buy
that argument or bigger disks. Fairly soon in your development process, you
will need to share an assembly among several applications, and you want the
.NET Framework to help you do that.

Shared assemblies live in 
the global assembly 
cache, administered by a 
number of tools.

The .NET Framework allows you to share assemblies by placing them in
the global assembly cache (GAC, pronounced like the cartoon exclamation).
This is a directory on your machine, currently \winnt\assembly or \win-
dows\assembly, in which all shared assemblies are required to live. You can
place assemblies into the cache, view their properties, and remove them from
the cache using a .NET Framework SDK command line utility called
GACUTIL.exe, which works well when run from scripts and batch files. Most
human users will prefer to use the Assembly Cache Viewer, which is a shell
extension that installs with the .NET Framework SDK. It automatically snaps
into Windows Explorer and provides you with the view of the GAC shown in
Figure 2-6.

Shared assemblies use 
public key cryptography to 
ensure that their names 
are unique.

Whenever you share any type of computer file, you run up against the
problem of name collisions. Because all .NET shared assemblies have to go in
the GAC so that they can be managed, we need some way of definitively pro-
viding unique names for all the code files that live there, even if their original
file names were the same. This is done with a strong name, otherwise known
as a shared name. A strong name uses public key cryptography to transpar-
ently produce a name that is guaranteed to be unique among all assemblies
in the system. The manifest of a shared assembly contains the public key of
a public/private key pair. The combination of the file’s name, version, and an
excerpt from this public key is the strong name.

f02tp06Figure 2-6 Global assembly cache viewer.

C02619182.fm  Page 32  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 33

This paragraph contains 
instructions for generating 
a shared assembly.

Suppose we want to write a shared assembly that lives in the GAC. I’ve
switched to Visual Studio .NET for this example, both to demonstrate it and
because I find it easier to operate than the command line tools. I’ve written a
different .NET component that does the same thing as our simplest time
example, except that it adds the version number to its returned time string.
Once I build the component, I need to generate and assign a strong name for
it, also known as signing the component. Visual Studio .NET can be config-
ured to do this automatically if you provide a file containing the public/pri-
vate key pair. You generate this file with the SDK command line utility
program SN.exe. You tell Visual Studio about the key file by specifying the
filename in the AssemblyInfo.vb file in the project, as shown in Listing 2-3.
When I build the component, Visual Studio .NET signs it automatically. I then
manually put it in the GAC by using Windows Explorer.

<Assembly: AssemblyKeyFileAttribute(“..\..\mykeys.snk”)>

Listing 2-3 AssemblyInfo.vb file entry specifying key pair for generating strong name.

This paragraph contains 
instructions for writing a 
client that uses an object 
from the GAC.

I’ve also provided a client that uses the shared assembly. I tell Visual
Studio to generate a reference to the server DLL by right-clicking on the Ref-
erences folder in Solution Explorer, selecting Add Reference to open the Add
Reference dialog box (shown in Figure 2-7), and then clicking Browse and
surfing over to the shared assembly file that resides in a standard directory.
Visual Studio generates a reference accessing that assembly.

Visual Studio cannot currently (version 2003) add a reference to an
assembly in the GAC, although this feature has been proposed for a future
release. This happened because in the first version of Visual Studio .NET, the
GAC’s design hadn’t yet stabilized by the time the developers needed to
design their reference mechanism. (Why they haven’t fixed this in Visual Stu-
dio .NET 2003 isn’t clear.) Therefore, unless they’re building client and server
together as part of the same project, developers must install two copies of their
components, one in a standard directory to compile against and another in the
GAC for their clients to run against. Users will require only the latter. When
you add a reference to an assembly marked with a strong name, Visual Studio
automatically sets the CopyLocal property of the newly-added reference to
False, thereby telling Visual Studio that you don’t want it to make a local copy.
It figures that, since the assembly has a strong name and is therefore able to go
into the GAC, that you probably want to run with the GAC copy.

C02619182.fm  Page 33  Thursday, March 6, 2003  2:31 PM



34 Introducing Microsoft .NET, Third Edition

f02tp07Figure 2-7 Adding a reference to a shared component.

The public/private key 
algorithm also provides a 
check on the integrity of 
the assembly’s files.

As an added benefit of the public key cryptography scheme used for
signing shared assemblies, we also gain a check on the integrity of the assem-
bly file. The assembly generator performs a hashing operation on the con-
tents of the files contained in the manifest. It then encrypts the result of this
hash using our private key and stores the encrypted result in the manifest.
When the loader fetches an assembly from the GAC, it performs the same
hashing algorithm on the assembly’s file or files, decrypts the manifest’s
stored hash using the public key, and compares the two. If they match, the
loader knows that the assembly’s files haven’t been tampered with. This
doesn’t get you any real identity checking because you can’t be sure whose
public key it really is, but it does guarantee that the assembly hasn’t been
tampered with since it was signed.

Assemblies and Versioning
Versioning of code is an 
enormous, painful, 
unsexy problem.

Dealing with changes to published code has historically been an enormous
problem, often known as DLL Hell. Replacing with a newer version a DLL
used by an existing client bit you two ways, coming and going. First, the new
code sometimes broke existing applications that depended on the original
version. As hard as you try to make new code backward compatible with the
old, you can never know or test everything that anyone was ever doing with
it. It’s especially annoying when you update a new DLL and don’t run the
now-broken old client until a month later, when it’s very difficult to remem-
ber what you might have done that broke it. Second, updates come undone

C02619182.fm  Page 34  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 35

when installing an application copies an older DLL over a newer one that’s
already on your computer, thereby breaking an existing client that depended
on the newer behavior. It happens all the time, when an installation script
says, “Target file xxx exists and is newer than the source. Copy anyway?” and
90 percent of the time the user picks Yes. This one’s especially maddening
because someone else’s application caused the problem, but your app’s the
one that won’t work, your tech support line is the one that receives expensive
calls and bomb threats, and you better hope you haven’t sold any copies of
the program to the Postal Service. Problems with versions cost an enormous
amount of money in lost productivity and debugging time. Also, they keep
people from buying upgrades or even trying them because they’re afraid the
upgrade will kill something else, and they’re often right.

.NET finally incorporates 
some functionality for 
versioning.

Windows has so far ignored this versioning problem, forcing developers
to deal with it piecemeal. There has never been, until .NET, any standardized
way for a developer to specify desired versioning behavior and have the
operating system enforce it. In .NET, Microsoft seems to have realized that
this is a universal problem that can be solved only at an operating system
level and has provided a system for managing different versions of code.

Each assembly contains 
information telling the 
runtime what version 
number it represents.

Every assembly contains version information in its manifest. This infor-
mation consists of a compatibility version, which is a set of four numbers
used by the common language runtime loader to enforce the versioning
behavior requested by a client. The compatibility version number consists of
a major and minor version number, a build number, and a revision number.
The development tools that produce an assembly put the version information
into the manifest. Visual Studio .NET produces version numbers for its assem-
blies from values that you set in your project’s AssemblyInfo.vb (or .cs) file, as
shown in Listing 2-4. Command line tools require complex switches to specify
an assembly’s version. You can see the version number in the IL Disassembler
at the bottom of Figure 2-8. You can also see it when you install the assembly
in the GAC, as shown previously in Figure 2-6.

‘ Version information for an assembly consists of the following
‘ four values:
‘
‘ Major Version
‘ Minor Version
‘ Revision
‘ Build Number
‘
‘ You can specify all the values or you can default the Build and
‘ Revision Numbers by using the ‘*’ as shown below:

<Assembly: AssemblyVersion(“2.0.*”)>

Listing 2-4 AssemblyInfo.vb file showing version of component assembly.

C02619182.fm  Page 35  Thursday, March 6, 2003  2:31 PM



36 Introducing Microsoft .NET, Third Edition

f02tp08Figure 2-8 ILDASM showing version of a server component.

The manifest can also contain an informational version, which is a
human readable string like “Microsoft .NET 1.1 April 2003.” The informational
version is intended for display to human viewers and is ignored by the com-
mon language runtime.

Every client assembly 
contains information 
about the versions it was 
built against.

When you build a client assembly, you’ve seen that it contains the name
of the external assemblies on which it depends. It also contains the version
number of these external assemblies, as you can see in Figure 2-9.

f02tp09Figure 2-9 ILDASM showing required version in a client.

By default, a client 
requires the exact version 
of the server against 
which it was built.

When the client runs, the common language runtime looks to find the
version that the client needs. The default versioning behavior requires the
exact version against which the client was built; otherwise the load will fail.
Since the GAC can contain different versions of the same assembly, as shown
in Figure 2-6, you don’t have the problem of a new version breaking old cli-
ents, or an older version mistakenly replacing a new one. You can keep all
the versions that you need in the GAC, and each client assembly will request
and receive the one that it has been written and tested against.

You can override default 
versioning behavior by 
using configuration files.

Occasionally this exact-match versioning behavior isn’t what you want.
You might discover a fatal defect, perhaps a security hole, in the original ver-
sion of the server DLL, and need to direct the older clients to a new one

C02619182.fm  Page 36  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 37

immediately. Or maybe you find such a bug in the new server and have to
roll the new clients back to use the old one. Rather than have to recompile all
of your clients against the replacement version, as would be the case with a
classic DLL, you can override the system’s default behavior through the use of
configuration files.

A publisher policy 
changes the versioning 
behavior of a GAC 
assembly for all its clients.

The most common way to do this is with a publisher policy, which
changes the versioning behavior for all clients of a GAC assembly. You set a
publisher policy by making entries in the master configuration file
machine.config, which holds the .NET administrative settings for your entire
machine. Machine.config is an XML-based file, and you might be tempted to
go at it with Notepad or your favorite XML editor. I strongly urge you to resist
this temptation; wipe out one angle bracket by accident or get the capitaliza-
tion wrong on just one name and your entire .NET installation may become
unusable (shades of the registry, except no one used Notepad on that, at least
not for long). Instead, use the .NET Framework Configuration utility
mscorcfg.msc, shown in Figure 2-10, which comes with the .NET SDK. This
utility allows you to view the GAC, similar to the Windows Explorer add-in I
showed in Figure 2-6. In addition, it allows you to configure the behavior of
assemblies in the GAC.

f02tp10Figure 2-10 The .NET Framework Configuration utility.

You set a publisher policy 
using the .NET Frame-
work Configuration utility 
mscorcfg.msc.

You set a publisher policy by making your server assembly into a con-
figured assembly, which is a GAC assembly for which a configuration file
holds entries that change the assembly’s behavior from default GAC assembly
behavior. You do this by right-clicking the Configured Assemblies tree item,
selecting Add, and either entering a specific assembly or selecting the assem-
bly you want from the list you’re offered. Once you have made the assembly
into a configured assembly, you can then change its behavioral properties by
right-clicking on the assembly in the right-hand pane and choosing Properties
from the context menu. Figure 2-11 shows the resulting dialog box. You enter
one or more binding policies, each of which consists of a set of one or more
old versions that the assembly loader will map to exactly one new version.
The configuration utility will write these entries into the configuration file in
the proper format. When a client creates an object requesting one of the

C02619182.fm  Page 37  Thursday, March 6, 2003  2:31 PM



38 Introducing Microsoft .NET, Third Edition

specified older versions, the loader checks the configuration file, detects the
publisher policy, and automatically makes the substitution. You can also enter
a codebase for an assembly, which tells the loader from where to download
a requested version if it isn’t already present on the machine.

f02tp11.Figure 2-11 Setting binding policies.

An individual application 
can override a publisher 
policy’s versioning behav-
ior with its own configura-
tion file.

If you need to redirect all the clients of one object version to a different
version instead of leaving the original version on the machine for its original
clients, then the machine-wide substitution that I just described is probably
what you want. Occasionally, however, you might need to tell one old client
to use a newer version of its server without changing the behavior of other old
clients. You can do this with an application configuration file, which is an
XML-based configuration file that modifies the behavior of a single applica-
tion. The name of this file is the full name of the application that it configures,
including the extension, with the additional extension “.config” tacked onto
the end (e.g., SharedAssemblyClientVB.exe.config). This file lives in the client
application’s own directory. While masochists can produce it by hand, anyone
who values her time will use the configuration utility on the client application
itself. You add the client application to the Applications folder in the .NET
Framework Configuration window. You must then add assemblies individually

C02619182.fm  Page 38  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 39

to the application’s Configured Assemblies section. You aren’t moving the
assemblies anywhere, you are simply adding configuration information to the
local application’s configuration file. The settings modify the default behavior
of the assembly loader when accessed by this client only, even if the assem-
bly lives in the GAC. When you set the configured assembly’s properties,
you’ll see an option to allow you to ignore publisher policies. Selecting this
option writes this information into your app configuration file, which will
cause the loader to give you the app’s original versioning behavior regardless
of publisher policies. You can also specify a different version redirection,
pointing your client app to someplace completely different. Just so you have
an idea of what it looks like internally, Listing 2-5 shows the relevant portions
of an application configuration file that ignore publisher policies and provide
its own version redirection:

<configuration>
<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<publisherPolicy apply="no” />
<dependentAssembly>

<assemblyIdentity name="SharedAssemblyComponentVB”
publicKeyToken="496ed8bd1d362eb2” />

<publisherPolicy apply="no” />
<bindingRedirect oldVersion="1.0.0.0-1.9.9.9"
newVersion="2.0.0.0” />

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Listing 2-5 Sample configuration file.

Tips from the Trenches
My customers report that they often use the publisher policy to
redirect all clients of a server version, but they almost never over-
ride the publisher policy with a private configuration file. “But
what happens when we change the file but don’t change the ver-
sion number?” they often ask. One word: Don’t. A new file means
a new version. Stick to that.

C02619182.fm  Page 39  Thursday, March 6, 2003  2:31 PM



40 Introducing Microsoft .NET, Third Edition

Object-Oriented Programming Features
Organizing the internal 
functionality of software 
projects is difficult.

When a software project reaches a certain level of complexity, the sheer effort
of organizing the source code, of remembering the internal workings of every
function, overwhelms the effort of dealing with your problem domain. No
single person can remember what all the functions do and how they fit
together, and chaos results. This critical size isn’t very large, perhaps a five-
programmer project, arguably less. To develop larger and more functional
pieces of software—Microsoft Word for example—we need a better way of
organizing code than providing global functions all over the place. Other-
wise, the effort of picking our way through our spaghetti code overwhelms
the work of figuring out how to process words.

The only way to success-
fully develop software 
projects that require the 
work of more than a few 
developers is to partition 
the projects into classes 
of objects.

The techniques of object-oriented programming were developed to
solve this problem and allow larger, more complex programs to be devel-
oped. Exactly what someone means when he uses the term “object-oriented”
is hard to pin down. The meaning depends heavily on the term’s usage con-
text and the shared background of the listeners. It’s sort of like the word
“love.” I once watched, amused, as two respected, relatively sober authors
argued vehemently for half an hour over whether a particular programming
technique truly deserved the description “object-oriented” or only the lesser
“object-based.” But like love, most developers agree that object-oriented soft-
ware is a Good Thing, even if they’re somewhat vague on why and not com-
pletely sure about what. As most people will agree that the word “love,” at
the minimum, indicates that you like something a lot, so most programmers
will agree that object-oriented programming involves at least the partitioning
of a program into classes, which combine logically related sets of data with
the functions that act on that data. An object is an individual instance of a
class. Cat is a class, my pet Simba is an instance of the class, an object. If you
do a good job of segregating your program’s functionality into classes that
make sense, your developers don’t have to understand the functionality of
the entire program. They can concentrate on the particular class or classes
involved in their subset of it, with (hopefully) minimal impact from other
classes.

.NET provides all lan-
guages with the object-
oriented features of inher-
itance and constructors.

Providing object-oriented functionality to a programmer has historically
been the job of the programming language, and different languages have
taken it to different levels. Standard COBOL, for example, doesn’t do it at all.
Visual Basic provides a minimal degree of object-oriented functionality,
essentially classes and nothing else. C++ and Java provide a high level of
object-oriented features. Languages that want to work together seamlessly
need to share the same degree of support for object-orientation, so the ques-
tion facing Microsoft and developers was whether to smarten up Visual Basic

C02619182.fm  Page 40  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 41

and other non-object-oriented languages or dumb down C++ and other lan-
guages that did support object-orientation. Because the architects of .NET
belong (as do I) to the school of thought that says object-orientation is the
only way to get anything useful done in the modern software industry, they
decided that object-oriented features would be an integral part of the com-
mon language runtime environment, and thus available to all languages. The
two most useful object-oriented techniques provided by the common lan-
guage runtime are inheritance and constructors. I’ll describe each of them in
the following sections.

Inheritance
Essentially all modern 
economic processes 
involve adding value to 
existing components.

Essentially no manufacturer in modern industry, with the possible exception
of glassmakers, builds their products entirely from nature, starting with earth,
air, fire, and water. Instead, almost everyone reuses components that some-
one else has built, adding value in the process. For example, a company that
sells camper trucks doesn’t produce engine and chassis; instead they buy
pickup trucks from an automaker and add specialized bodies to them. The
automaker in turn bought the windshields from a glass manufacturer, who
bought sand from a digger. We would like our software development process
to follow this model, starting with generic functionality that someone else has
already written and adding our own specialized attachments to it.

Object-oriented program-
ming provides this con-
cept in software by means 
of inheritance.

The object-oriented programming technique known as inheritance
makes development of components much easier for programmers of software
objects than it is for makers of physical objects. Someone somewhere uses a
programming language that supports inheritance to write an object class,
called the base class, which provides some useful generic functionality, say,
reading and writing bytes from a stream. We’d like to use this basic function-
ality, with our own twists in it, in a class that reads and writes like the base
class but that also provides statistics such as length. So we write a piece of
software, known as the derived class, that incorporates the base class’s func-
tionality but modifies it in some manner, either adding more pieces to it,
replacing some portion of it while leaving the rest intact, or a combination of
both. We do this by simply telling the compiler that our derived class inherits
from the base class, using the syntax of our programming language. The com-
piler will automatically include the base class’s functionality in our derived
class by reference. Think of it as cutting and pasting without actually moving
anything. The derived class is said to inherit from, derive from, or extend the
base class. The process is shown in Figure 2-12 with several intervening
classes omitted for clarity.

C02619182.fm  Page 41  Thursday, March 6, 2003  2:31 PM



42 Introducing Microsoft .NET, Third Edition

f02tp12Figure 2-12 Object-oriented programming inheritance.

Every .NET object inherits 
from the system base 
class System.Object.

The .NET Framework uses inheritance to provide all kinds of system
functionality, from the simplest string conversions to the most sophisticated
Web services. To explore inheritance further, let’s start as always with the sim-
plest example we can find. The time component I wrote previously in this
chapter offers a good illustration of .NET Framework inheritance. Even
though I didn’t explicitly write code to say so, our time component class
derives from the Microsoft-provided base class System.Object. You can see
that this is so by examining the component with ILDASM, as shown in Figure
2-13. All objects in the .NET system, without exception, derive from Sys-
tem.Object or another class that in turn derives from it. If you don’t specify a
different base class, System.Object is implied. If you prefer a different base
class, you specify it by using the keyword Inherits in Visual Basic, as shown
in Listing 2-6, or the colon operator in C#.

f02tp13Figure 2-13 ILDASM showing inheritance from System.Object.

Public Class WebService1
Inherits System.Web.Services.WebService

Listing 2-6 Explicit declaration of inheritance.

In more complex cases, the Visual Studio .NET Object Browser shows
us the inheritance tree. This case is too simple for it to handle. Figure 2-14
shows the Object Browser.

ButtonTextBox

Control

System.Object

C02619182.fm  Page 42  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 43

f02tp14Figure 2-14 The Visual Studio Object Browser showing the inheritance
tree.

OK, our time component inherits functionality from System.Object, but
how do we know what was in the will? We find that out with a little old-
fashioned RTFM (Read The Funny Manual, more or less). When we do that,
we find that our base class has the public methods shown in Table 2-1. That
means that our derived class, the time component, knows how to do these
things even though we didn’t write code for them.

Table 2-1 Public Methods of System.Object

Method name Purpose

Equals Determines whether this object is the same instance as a speci-
fied object.

GetHashCode Quickly generates and returns an integer that can be used to 
identify this object in a hash table or other indexing scheme.

GetType Returns the system metadata of the object.

ToString Returns a string that provides the object’s view of itself.

C02619182.fm  Page 43  Thursday, March 6, 2003  2:31 PM



44 Introducing Microsoft .NET, Third Edition

The Equals method determines whether two object references do or do
not refer to the same physical instance of an object. This determination was
surprisingly difficult to make in COM and could easily be broken by an incor-
rectly implemented server, but in .NET our objects inherit this functionality
from the base class. I’ve written a client application that creates several
instances of our time component and demonstrates the Equals method,
among others. It’s shown in Figure 2-15.

f02tp15Figure 2-15 Client program demonstrating System.Object features inher-
ited by time component.

You can override a base 
class’s methods to 
replace part of its func-
tionality.

Sometimes your component doesn’t want everything it inherits from a
base class, just like human heirs. You love the antique table your Aunt Sophie
left you, but you aren’t real crazy about her flatulent bulldog (or vice versa).
Software inheritance generally allows a derived class to override a method
that it inherits from the base class: that is, provide a replacement for it. A good
example of this is the method System.Object.ToString, which tells an object to
return a string for display to a programmer who is debugging the application.
The implementation that we inherit from System.Object simply returns the
name of the derived class, which isn’t that illuminating. To make our compo-
nent easier to debug, we’d like this method to return more detailed informa-
tion. For example, an object that represents an open file might return the
name of that file, or a System.Boolean object return its value “true” or “false”.
We do that by overriding the base class’s method, as shown in Listing 2-7. We
write a method in our derived class that has the same name and parameters
as the method in the base class, specifying the keyword Overrides (override in
C#) to tell the compiler to replace the base class’s implementation with our
derived class’s new one.

C02619182.fm  Page 44  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 45

‘ This method overrides the ToString method of the
‘ universal base class System.Object.

Public Overrides Function ToString() As String

‘ Call the base class’s ToString method and get the result.
‘ You don’t have to do this if you don’t want to. I did,
‘ for demo purposes.

Dim BaseResult As String
BaseResult = MyBase.ToString

‘ Construct response string with base class’s string plus
‘ my own added information. The net result here is that
‘ I’m piggybacking on the base class, not completely
‘ replacing it.

Return “You have reached the overriding class. “ + _
“The base class says: “ + BaseResult

End Function

Listing 2-7 Overriding base class method.

An overriding method can 
access the base class’s 
method that it overrides.

If your derived class wants to provide its own functionality in addition to
that of the base class—rather than instead of the base class—it can call the
overridden base class’s method explicitly. In Visual Basic, the base class is
accessible through the named object MyBase, and in C# it’s called base. The
sample component calls the base class to get its string and then appends its
own string to that of the base class. The result is that the component is piggy-
backing on the base class’s functionality rather than completely replacing it.

Some classes can’t serve 
as bases, but others have 
to.

Most classes can serve as base classes for derivation. A few cannot, such
as System.String. These classes are marked as NotInheritable in Visual Basic
and sealed in C#. A class designer does this with classes that have fragile
innards that he’s worried another programmer might break. For example, the
String class has been highly optimized behind the scenes to improve its per-
formance, and its designers don’t want to worry about breaking derived
classes if they ever change this code. Other classes must serve only as base
classes for derivation; you can’t instantiate them directly. These are marked as
MustInherit in Visual Basic and abstract in C#. An example of an abstract base
class is System.IO.Stream. A designer makes a class abstract to force a com-
mon design pattern on a set of derived classes, by means of abstract methods
described in the next paragraph. 

C02619182.fm  Page 45  Thursday, March 6, 2003  2:31 PM



46 Introducing Microsoft .NET, Third Edition

Some methods can’t be 
overridden, while others 
must be.

Most base class methods can be overridden, as I’ve shown you, but
some of them can’t and a few of them must be.  A base class method must
contain the keyword Overridable in Visual Basic or virtual in C# if you want
to allow this. The method System.Object.GetType is not so written, and there-
fore cannot be overridden. The designers of the class hierarchy thought this
class’s functionality was too important for proper operation of many parts of
the system to allow anyone to monkey with it. An abstract base class, on the
other hand, contains methods that must be overridden, marked as MustOver-
ride in Visual Basic or abstract in C#. For example, the abstract base class Sys-
tem.IO.Stream contains the abstract method Read. Classes that derive from it,
such as System.IO.MemoryStream and System.IO.FileStream, must provide
their own implementations of this method. Clients therefore see a common
set of functions from all stream-derived classes.

.NET inheritance works 
between different 
languages.

Much is made of the ability of .NET to provide cross-language inherit-
ance, that is, to allow a class written in one language, Visual Basic, for exam-
ple, to derive from a base class written in another language, say C#. COM
couldn’t provide this feature because the differences between language
implementations were too great. However, the standardized IL architecture of
the common language runtime allows .NET applications to use it. In fact, the
simple time component example does exactly that with no effort on my part.
I guarantee you that the System.Object class is written in one language and
not any other, yet every .NET object, without exception and regardless of lan-
guage, inherits from it.

Object Constructors
Objects need a standard 
place for putting initializa-
tion code.

As the Good Rats sang a couple of decades ago, “birth comes to us all.” As
humans mark births with various rituals (religious observances, starting a
college fund), so objects need a location where their birth-ritual code can
be placed. Object-oriented programming has long recognized the concept
of a class constructor, a function called when an object is created. (Object-
oriented programming also uses the concept of a class destructor, a function
called when the object is destroyed, but this concept has been replaced in
.NET with the system garbage collector described in the next section.) Differ-
ent languages have implemented constructors differently—C++ with the class
name, Visual Basic with Class_Initialize. As with so many features that have
varied widely among languages, the rituals for object creation had to be stan-
dardized for code written in different languages to work together properly.

.NET object classes 
provide for initialization 
through an object 
constructor.

In .NET, Visual Basic lost its Class_Initialize event, and the model looks
much more like a C++ model, primarily because parameterized constructors
are needed to support inheritance. Every .NET class can have one or more
constructor methods. This method has the name New in Visual Basic .NET or

C02619182.fm  Page 46  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 47

the class name in C#. The constructor function is called when a client creates
your object using the new operator. In the function, you place the code that
does whatever initialization your object requires, perhaps acquiring resources
and setting them to their initial state. An example of a constructor is shown in
Listing 2-8.

Public Class Point

Public x, y As Integer

‘ Default constructor accepts no parameters,
‘ initializes member variables to zero

Public Sub New()
x = 0
y = 0

End Sub

‘ This constructor accepts two parameters, initializing
‘ member variables to the supplied values.

Public Sub New(ByVal newx As Integer, ByVal newy As Integer)
x = newx
y = newy

End Sub

End Class

Listing 2-8 Constructor declaration example.

Object constructors can 
accept different sets of 
parameters, allowing an 
object to be created in a 
particular state.

One of the more interesting things you can do with a constructor is
allow the client to pass parameters to it, thereby allowing the client to place
the object in a particular state immediately upon its creation. For example, the
constructor of an object representing a point on a graph might accept two
integer values, the X and Y location of that point. You can even have several
different constructors for your class that accept different sets of parameters.
For example, our Point object class might have one constructor that accepts
two values, another that accepts a single existing point, and yet a third that
accepts no parameters and simply initializes the new point’s members as
zero. An example is shown in Listing 2-9. This flexibility is especially useful if
you want to make an object that requires initialization before you can use it.
Suppose you have an object that represents a patient in a hospital, supporting
methods such as Patient.ChargeLotsOfMoney and Patient.Amputate (which-
Limb). Obviously, it is vital to know which human being each individual
instance of this class refers to or you might remove money or limbs from the
wrong patient, both of which are bad ideas, the latter generally more so than

C02619182.fm  Page 47  Thursday, March 6, 2003  2:31 PM



48 Introducing Microsoft .NET, Third Edition

the former. By providing a constructor that requires a patient ID—and not
providing a default empty constructor—you ensure that no one can ever
operate on an unidentified patient or inadvertently change a patient’s ID once
it’s created.

Dim foo As New Point ( )

Dim bar As New Point (4, 5)

Listing 2-9 Constructor call example.

Tips from the Trenches
The technique of requiring a nondefault constructor breaks in sev-
eral design cases. A .NET class that deserializes itself from XML
(see Chapter 7) or a .NET class accessed by a COM client (see later
in this chapter) requires a constructor that has no parameters. You
can have as many more as you like, but you must have one con-
structor that takes no parameters.

.NET Memory Management
Manual memory manage-
ment leads to costly, hard-
to-find bugs.

One of the main sources of nasty, difficult-to-find bugs in modern applica-
tions is incorrect use of manual memory management. Older languages such
as C++ required programmers to manually delete objects that they had cre-
ated, which led to two main problems. First, programmers would create an
object and forget to delete it when they finished using it. These leaks eventu-
ally consumed a process’s entire memory space and caused it to crash. Sec-
ond, programmers would manually delete an object but then mistakenly try
to access its memory location later. Visual Basic would have detected the ref-
erence to invalid memory immediately, but C++ often doesn’t. Sometimes the
transistors that had made up the deleted object memory would still contain
plausible values, and the program would continue to run with corrupted data.
These mistakes seem painfully obvious in the trivial examples discussed here,
and it’s easy to say, “Well, just don’t do that, you doofus.” But in real pro-
grams, you often create an object in one part of the program and delete it in
another, with complex logic intervening—logic deleting the object in some
cases but not others. Both of these bugs are devilishly difficult to reproduce
and harder still to track down. Programming discipline helps, of course, but
we’d really like some way to keep our programmers thinking about our busi-

C02619182.fm  Page 48  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 49

ness logic, not about resource management. You can bet that Julia Child, the
grand dame of TV chefs, hires someone to clean up her kitchen when she’s
done with it so that she can concentrate on the parts of cooking that require
her unique problem-domain expertise.

Automatic memory man-
agement and resource 
recovery of the type built 
into Visual Basic and Java 
is a very useful feature.

Modern languages such as Visual Basic and Java don’t have this type of
problem. These languages feature “fire-and-forget” automatic memory man-
agement, which is one of the main reasons that programmers select them for
development. A Visual Basic 6.0 programmer doesn’t have to remember to
delete the objects that she creates in almost all cases. (Remember that
“almost”; it will figure into an important design decision later.) Visual Basic
6.0 counts the references to each object and automatically deletes the object
and reclaims its memory when its count reaches zero. Her development envi-
ronment provides her with an automatic scullery maid cleaning the used pots
and pans out of her sink and placing them back on her shelves. Wish I could
get the same thing for my real kitchen. Maybe if you tell all your friends to
buy this book….

Microsoft has made automatic memory management part of the .NET
common language runtime, which allows it to be used from any language. It’s
conceptually simple, as shown in Figure 2-16.

f02tp16Figure 2-16 Automatic memory management with garbage collection.

The common language 
runtime garbage collector 
makes automatic memory 
management available to 
any application.

A programmer creates an object using the new operator and receives a
reference to it. The common language runtime allocates that object’s memory
from the managed heap, a portion of a process’s memory reserved by the
runtime for this purpose. Every so often, a system thread examines all the
objects in the managed heap to see which of them the program still holds
outstanding references to. An object to which all references have disappeared
is called garbage and is removed from the managed heap. The objects
remaining in the managed heap are then compacted together, and the exist-

Managed heap
Public Sub foo

 1. Program creates object, 
memory manager allocates 
from managed heap, and 
program receives a 
reference to it.

Dim bar As New A      
End Sub

 2. Function returns, reference 
disappears, object in 
managed heap has no 
references.

System Garbage Collector (GC)

 3. On a periodic check, GC 
determines that object has 
no references and deletes it. 

Obj A

Client

C02619182.fm  Page 49  Thursday, March 6, 2003  2:31 PM



50 Introducing Microsoft .NET, Third Edition

ing references in the program fixed to point to their new location. The entire
operation is called garbage collection. It solves the aforementioned problems
of manual memory management without you having to write any code. You
can’t forget to delete an object because the system cleans up after you. And
you can’t access a deleted object through an invalid reference because the
object won’t be deleted as long as you hold any reference to it. Obviously,
garbage collection is going to take more CPU cycles to run than just a stan-
dard in-out heap allocator, even though it is written to ensure that it doesn’t
check an object twice or get caught in circular object references. As I said pre-
viously, I think this is a good investment of CPU cycles because it gets you
faster development time with fewer bugs.

The garbage collector 
runs when it feels like it, 
but you can force a gar-
bage collection manually.

This magical collection of garbage takes place when the garbage collec-
tor darn well feels like it. Apart from detecting no more available memory in
the managed heap in response to an allocation request, no one really knows
what the exact algorithm is for launching a garbage collection, and I wouldn’t
be surprised to see it vary from one version to another of the released prod-
uct. You can force a garbage collection manually by calling the function Sys-
tem.GC.Collect. You might want to make this call at logical points in your
program; for example, to clear away the debris just after a user saves a file or
perhaps to clear the decks just before starting a large operation. Most of the
time you just let the garbage collector do its thing when it wants to.

Before garbage collec-
tion, we often put cleanup 
code in an object’s 
destructor or 
Class_Terminate method.

Automatic garbage collection looks great so far, but it leaves us with one
gaping hole. What about the cleanup that an object needs to do when it gets
destroyed? C++ applications usually cleaned up in an object’s destructor, and
Visual Basic classes did the same thing in their Class_Terminate methods.
This is a good location for cleanup code because a client can’t forget to call
it, but how can we handle this with automatic garbage collection? First, let’s
realize that the problem has gotten considerably smaller. The main cleanup
task we performed in C++ destructors was to delete additional objects to
which the destructing object held references, and now garbage collection
takes care of that for us automatically. But occasionally we’ll need to do some
cleanup that doesn’t involve local garbage-collected resources; for example,
releasing a database connection or logging out from a remote system.

The garbage collector 
supports an object final-
izer method for necessary 
cleanup code.

The common language runtime garbage collection supports the notion of
a finalizer, an object method that is called when the object is garbage col-
lected. It is somewhat analogous to a C++ class destructor and also to the
Visual Basic Class_Terminate method, both of which it replaces. However, a
finalizer is significantly different from both of these other mechanisms in ways
you may find unsettling. The universal runtime base class System.Object con-
tains a method called Finalize, which we override as shown in Listing 2-10.
When the object is garbage collected, the garbage collection thread detects the
fact that our object has a Finalize method and calls it, thereby executing our

C02619182.fm  Page 50  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 51

cleanup code. Although early versions didn’t do it, the released version of
.NET calls all outstanding finalizers automatically when an application shuts
down.

In C#, you supply a finalizer by writing what looks like an ordinary
destructor, but under the hood your compiler is overriding the Finalize
method and it behaves as a garbage-collected finalizer and not a deterministic
destructor as in C++. This is the only case I’ve ever seen in which Visual Basic
code provides a clearer view of what’s really going on behind the scenes than
a C-family language does.

Protected Overrides Sub Finalize()

‘ Perform whatever finalization logic we need.

MessageBox.Show(“In Finalize, my number = “ + _
MyObjectNumber.ToString())

‘ Forward the call to our base class.

MyBase.Finalize()

End Sub

Listing 2-10 Providing a Finalize function in an object.

Note Finalizers look simple, but their internal behavior is actually
quite complex and it’s fairly easy to mess them up. If you are plan-
ning on using them, you MUST read Jeffrey Richter’s account of gar-
bage collection in his book, Applied Microsoft .NET Framework
Programming (Microsoft Press, 2002). The fact that it took him a
whole chapter to describe it should tell you something about the
internal complexity of garbage collection, even if, or perhaps
because, its connection to your program is so simple.

Using a finalizer can be 
trickier than it looks.

Using a finalizer has some disadvantages as well. Obviously it consumes
CPU cycles, so you shouldn’t use it if you have no cleanup to do. There is no
way to guarantee the order in which the garbage collector calls the finalizers
of garbage objects, so don’t depend on one object finalizing before or after
another, regardless of the order in which the last reference to each of them
disappeared. Finalizers are called on a separate garbage-collector thread
within your application, so you can’t do any of your own serialization to
enforce a calling order or you’ll break the whole garbage collection system in

C02619182.fm  Page 51  Thursday, March 6, 2003  2:31 PM



52 Introducing Microsoft .NET, Third Edition

your process. Since your object became garbage, the objects that it holds
might have become garbage too unless you’ve taken steps to prevent that
from happening. Don’t plan on calling any other object in your application
from your finalizer unless you’ve explicitly written code to ensure that some-
one is holding a reference to keep the other object from becoming garbage.
Don’t plan on throwing exceptions (see the section about structured excep-
tion handling later in this chapter) from your finalizer; no one is listening to
you any more, you garbage object, you. And make sure you catch any excep-
tions generated by your cleanup code so that you don’t disturb the garbage
collector’s thread that calls your finalizer.

Finalizers are fine if we don’t care when our cleanup gets done, if “even-
tually, by the time you really need it, I promise” is soon enough. Sometimes
this is OK, but it isn’t so good if the resources that a finalizer would recover
are scarce in the running process—database connections, for example. Even-
tual recovery isn’t good enough; we need this object shredded NOW so that
we can recover its expensive resources that the generic garbage collector
doesn’t know about. We could force an immediate garbage collection, as dis-
cussed previously, but that requires examining the entire managed heap,
which can be quite expensive even if there’s nothing else to clean up. Since
we know exactly which object we want to dismantle, we’d like a way of
cleaning up only that object, as Julia often wipes off her favorite paring knife
without having to clean up her entire kitchen (including taking out the gar-
bage). This operation goes by the grand name of deterministic finalization.
Objects that want to support deterministic finalization do so by implementing
an interface called IDisposable, which contains the single method, Dispose. In
this method, you place whatever code you need to release your expensive
resources. The client calls this method to tell the object to release those
resources right now. For example, all Windows Forms objects that represent
a window in the underlying operating system support this feature to enable
quick recovery of the operating system window handle that they contain.

Sometimes you will see an object provide a different method name for
deterministic finalization in order for the name to make sense to a developer
who needs to figure out which method to call. For example, calling Dispose
on a file object would make you think that you were shredding the file, so the
developer of such an object will provide deterministic finalization through a
method with the more logical name of Close.

An object that wants to 
provide a deterministic 
way for a client to release 
its resources exposes a 
method called Dispose.

Deterministic finalization sounds like a good idea, but it also contains its
own drawbacks. You can’t be sure that a client will remember to call your
Dispose method, so you need to provide cleanup functionality in your final-
izer as well. However, if your client does call Dispose, you probably don’t

C02619182.fm  Page 52  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 53

want the garbage collector to waste its time calling your object’s finalizer, as
the cleanup should have already been done by the Dispose method. By call-
ing the function System.GC.SuppressFinalize, you tell the garbage collector
not to bother calling your finalizer even though you have one. A Visual Basic
object also needs to expressly forward the Dispose call to its base class if the
base class contains a Dispose method, as the call won’t otherwise get there
and you will fail to release the base class’s expensive resources. A C# destruc-
tor does this automatically. A sample Dispose method is shown in Listing 2-11.
This class is derived from System.Object, which doesn’t contain a Dispose
method, so I’ve omitted the code that would forward that call.

You have to write code to 
handle the case in which 
a client accesses your 
object after calling Dis-
pose on it.

I’ve written a small sample program that illustrates the concepts of auto-
matic memory management and garbage collection. You can download it
from this book’s Web site. A picture of the client app is shown in Figure 2-17.
Note that calling Dispose does not make an object garbage. In fact, by defini-
tion, you can’t call Dispose on an object that is garbage because then you
wouldn’t have a reference with which to call Dispose. The object won’t
become garbage until no more references to it exist, whenever that may be.
I’d suggest that your object maintain an internal flag to remember when it has
been disposed of and to respond to any other access after its disposal by
throwing an exception.

Public Class Class1
Implements System.IDisposable

Public Sub Dispose() Implements System.IDisposable.Dispose
‘ Do whatever logic we need to do to immediately free up
‘ our resources.

MessageBox.Show(“In Dispose(), my number = “ + _
MyObjectNumber.ToString())

‘ If our base class contained a Dispose method, we’d
‘ forward the call to it by uncommenting the following line.

‘ MyBase.Dispose()

‘ Mark our object as no longer needing finalization.

System.GC.SuppressFinalize(Me)
End Sub

End Class

Listing 2-11 Sample Dispose method for deterministic finalization.

C02619182.fm  Page 53  Thursday, March 6, 2003  2:31 PM



54 Introducing Microsoft .NET, Third Edition

f02tp17Figure 2-17 Memory management client application.

Microsoft decided on gar-
bage collection memory 
management to make it 
leak proof, even at the 
cost of easy determinism.

While automatic garbage collection makes the simple operations of allo-
cating and freeing objects easier to write and harder to mess up than they
were in C++, it makes deterministic finalization harder to write and easier to
mess up than it was in Visual Basic 6. C++ programmers will probably con-
sider this a great profit, while Visual Basic programmers, who are used to
their automatic, almost foolproof behavior also being deterministic, may at
first consider it a step back. The reason that Microsoft switched to garbage
collection is that Visual Basic’s reference counting algorithm didn’t correctly
handle the case of circular object references, as in the case where a child
object holds a reference to its parent. Suppose object A creates object B,
object B creates object C, and object C obtains and holds a reference to its
parent, object B. Suppose that object A now releases object B. Object B won’t
be destroyed now because object C still holds a reference to it, and C won’t
let go until B lets go of it. Unless a programmer writes code to break the cir-
cular reference before A lets go, both B and C are leaked away, orphans with
no references except their hold on each other, which keeps them both alive.
The garbage collection algorithm will automatically detect and handle this cir-
cular reference case, while reference counting will not. After much discussion
of alternatives and banging of heads against walls, Microsoft decided that
foolproof, automatic leak prevention in all cases was more important than
easy determinism. Some programmers will agree, others won’t, but the choice
was carefully reasoned and not capricious. After an initial period of suspicion,
I’m coming around to this way of thinking. I find that I don’t need determin-
istic finalization very often, and as a refugee from C++ memory leaks, I
REALLY love the fire-and-forget nature of garbage collection.

C02619182.fm  Page 54  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 55

Tips from the Trenches
The adoption of garbage collection has gone pretty much as I
expected. My customers report that they absolutely love its auto-
matic fire-and-forget nature, but they hate the deterministic final-
ization design pattern because clients often forget to call Dispose.
Remember, you need deterministic finalization only in two cases:
where your object is a wrapper for an expensive resource, or
where you need to enforce object cleanup in a certain order. A
somewhat hacky solution to the former case is to place a static
counter in the class that wraps expensive resources, increment that
counter in the class’s constructor, and, when it hits a certain value,
reset it and force a garbage collection.

Interoperation with COM
The commercial success of any new software platform depends critically on
how well it integrates with what already exists while providing new avenues
for development of even better applications. For example, Windows 3.0 not
only allowed existing DOS applications to run, but it also multitasked them
better than any other product up to that point and provided a platform for
writing Windows applications that were better than any DOS app. The canvas
on which we paint is essentially never blank. How did God manage to create
the world in only six days? He didn’t have any installed base to worry about
being backward compatible with. (My editor points out that He also skimped
on documentation.)

Backward compatibility is 
crucial in the development 
of any new system. 
Therefore, .NET supports 
interoperation with COM.

Windows has depended on COM for interapplication communication
since 1993. Essentially all code for the Windows environment is neck-deep in
COM and has been for an awfully long time in geek years. The .NET Frame-
work has to support COM to have any chance of succeeding commercially.
And it does, both as a .NET client using a COM server, and vice versa. Since
it is more likely that new .NET code will have to interoperate with existing
COM code than the reverse, I will describe that case first.

Using COM Objects from .NET
A .NET client accesses a 
COM object through a 
runtime callable wrapper 
(RCW).

A .NET client accesses a COM server by means of a runtime callable wrapper
(RCW), as shown in Figure 2-18. The RCW wraps the COM object and medi-
ates between it and the common language runtime environment, making the

C02619182.fm  Page 55  Thursday, March 6, 2003  2:31 PM



56 Introducing Microsoft .NET, Third Edition

COM object appear to .NET clients just as if it were a native .NET object and
making the .NET client appear to the COM object just as if it were a standard
COM client.

f02tp18Figure 2-18 .NET client/COM object interaction via a runtime callable
wrapper.

You can generate an 
RCW with a variety of 
development tools.

The developer of a .NET client generates the RCW in one of two ways. If
you’re using Visual Studio .NET, simply right-click on the References section of
your project and select Add Reference from the context menu. You will see the
dialog box shown in Figure 2-19, which offers a choice of all the registered
COM objects it finds on the system. Select the COM object for which you want
to generate the RCW, and Visual Studio .NET will spit it out for you. If you’re
not using Visual Studio .NET, the .NET SDK contains a command line tool
called TlbImp.exe, the type library importer that performs the same task. The
logic that reads the type library and generates the RCW code actually lives in a
.NET run-time class called System.Runtime.InteropServices.TypeLibConverter.
Both Visual Studio .NET and TlbImp.exe use this class internally, and you can
too if you’re writing a development tool or feeling masochistic.

f02tp19Figure 2-19 Locating COM objects for RCW generation.

.NET client
Runtime
callable
wrapper

COM object

IUnknown, IDispatch, 
IFoo interfaces

C02619182.fm  Page 56  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 57

Figure 2-20 shows a sample .NET client program that uses a COM object
server. You can download the samples and follow along from the book’s Web
site. This sample contains a COM server, a COM client, and a .NET client so
that you can compare the two. The source code is shown in Listing 2-12.

f02tp20Figure 2-20 Sample .NET client using a COM server.

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

‘ Create an instance of the RCW that wraps our COM object.

Dim RuntimeCallableWrapper As New ComUsedByDotNet.Class1()

‘ Call the method that gets the time.

Label1.Text = RuntimeCallableWrapper.GetTimeFromCom(CheckBox1.Checked)

‘ Object becomes garbage when it goes out of scope,
‘ but is not actually released until next garbage collection.

End Sub

Listing 2-12 Code listing of a .NET client using an RCW.

The RCW magically con-
verts .NET calls into COM 
and COM results to .NET.

After you generate the RCW as described in the preceding paragraph,
you will probably want to import its namespace into the client program using
the Imports statement, allowing you to refer to the object using its short name.
You create the RCW object simply by using the new operator, as you would
for any other .NET object. When it’s created, the RCW internally calls the
native COM function CoCreateInstance, thereby creating the COM object that
it wraps. Your .NET client program then calls methods on the RCW as if it
were a native .NET object. The RCW automatically converts each call to the
COM calling convention—for example, converting .NET strings into the BSTR
strings that COM requires—and forwards it to the object. The RCW converts
the results returned from the COM object into native .NET types before

C02619182.fm  Page 57  Thursday, March 6, 2003  2:31 PM



58 Introducing Microsoft .NET, Third Edition

returning them to the client. Users of the COM support in Visual J++ will find
this architecture familiar.

COM objects are actually 
destroyed when their 
RCWs are garbage 
collected.

When you run the sample COM client program, you’ll notice (from dia-
log boxes that I place in the code) that the object is created when you click
the button and then immediately destroyed. When you run the sample .NET
client program, you’ll find that the object is created when you click the Get
Time button, but that the object isn’t destroyed immediately. You would think
it should be, as the wrapper object goes out of scope, but it isn’t, not even if
you explicitly set the object reference to nothing. This is the .NET way of lazy
resource recovery, described previously in the section about garbage collec-
tion. The RCW has gone out of scope and is no longer accessible to your pro-
gram, but it doesn’t actually release the COM object that it wraps until the
RCW is garbage collected and destroyed. This can be a problem, as most
COM objects were not written with this life cycle in mind and thus might
retain expensive resources that should be released as soon as the client is fin-
ished. You can solve this problem in one of two ways. The first, obviously, is
by forcing an immediate garbage collection via the function System.GC.Col-
lect. Calling this function will collect and reclaim all system resources that are
no longer in use, including all the RCWs not currently in scope. The draw-
back to this approach is that the overhead of a full garbage collection can be
high, and you may not want to pay it immediately just to shred one object. If
you would like to blow away one particular COM object without affecting the
others, you can do so via the function System.Runtime.InteropServices.Mar-
shal.ReleaseComObject.

The RCW mechanism described in the preceding paragraphs requires an
object to be early-bound, by which I mean that the developer must have inti-
mate knowledge of the object at development time to construct the wrapper
class. Not all objects work this way. For example, scripting situations require
late binding, in which a client reads the ProgID of an object and the method
to call on it from script code at run time. Most COM objects support the IDis-
patch interface specifically to allow this type of late-bound access. Creating an
RCW in advance is not possible in situations like this. Can .NET also handle it?

.NET also supports late 
binding without too much 
trouble.

Fortunately, it can. The .NET Framework supports late binding to the
IDispatch interface supported by most COM objects. A sample late binding
program is shown in Figure 2-21, and its code in Listing 2-13. You create a
system type based on the object’s ProgID via the static method Type.Get-
TypeFromProgID. The static method Type.GetTypeFromCLSID (not shown)
does the same thing based on a CLSID, if you have that instead of a
ProgID. Once you have the type, you  create the COM object using the

C02619182.fm  Page 58  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 59

method Activator.CreateInstance and call a method via the function
Type.InvokeMember. These functions are part of .NET reflection, which I dis-
cuss in Chapter 11. It’s more work—late binding always is—but you can do it.

f02tp21Figure 2-21 Sample late binding program.

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

‘ Get system type name based on prog ID.

Dim MyType As System.Type
MyType = Type.GetTypeFromProgID(textBox1().Text)

‘ Use an activator to create object of that type.

Dim MyObj As Object
MyObj = Activator.CreateInstance(MyType)

‘ Assemble array of parameters to pass to COM object.

Dim prms() As Object = {checkBox1().Checked}

‘ Call method on object by its name.

label2().Text = MyType.InvokeMember(“GetTimeFromCom", _
Reflection.BindingFlags.InvokeMethod, Nothing, MyObj, _
prms).ToString()

End Sub

Listing 2-13 Sample late binding code.

C02619182.fm  Page 59  Thursday, March 6, 2003  2:31 PM



60 Introducing Microsoft .NET, Third Edition

Tips from the Trenches
Clients report from the field that they don’t like using COM from
their .NET programs. The code required to work with COM is easy
to write, but the inclusion of even one badly behaved COM object
can bring down an otherwise robust .NET application. For exam-
ple, COM objects don’t allocate memory from the managed heap,
even when you access them through an RCW from a .NET applica-
tion. They therefore can leak memory that the .NET garbage col-
lector can’t reclaim. The interoperation capability lets you develop
test cases and pilot projects and use third party COM components
whose vendors haven’t yet ported them to .NET. But if you use this
capability as a long-term solution, you’ll be missing many of the
benefits of .NET.

Using .NET Objects from COM
A COM client accesses a 
.NET object through a 
COM callable wrapper 
(CCW).

Suppose, on the other hand, you have a client that already speaks COM and
now you want to make it use a .NET object instead. This is a somewhat less
common scenario than the reverse situation that I’ve previously described
because it presupposes new COM development in a .NET world. But I can
easily see it occurring in the situation in which you have an existing client that
uses 10 COM objects and you now want to add an 11th set of functionality
that exists only as a .NET object—and you want all of them to look the same
to the client for consistency. The .NET Framework supports this situation as
well, by means of a COM callable wrapper (CCW), as shown in Figure 2-22.
The CCW wraps up the .NET object and mediates between it and the com-
mon language runtime environment, making the .NET object appear to COM
clients just as if it were a native COM object.

f02tp22Figure 2-22 COM callable wrapper.

A .NET component must 
be signed, live in the 
GAC, and provide a 
default constructor to 
work with a COM client.

To operate with a COM callable wrapper, a .NET component’s assem-
bly must be signed with a strong name; otherwise the common language
runtime won’t be able to definitively identify it. It must also reside in the
GAC or, less commonly, in the client application’s directory. However, as

COM client
COM

Callable
Wrapper

.NET objectCOM client
COM

callable
wrapper

IUnknown, IDispatch, 
IFoo interfaces

.NET object
IFoo interface

C02619182.fm  Page 60  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 61

was the case previously when building the shared component’s client, the
component must also reside at registration time in a standard directory out-
side the GAC. Any .NET class that you want COM to create must provide a
default constructor, by which I mean a constructor that requires no parame-
ters. COM object creation functions don’t know how to pass parameters to the
objects that they create, so you need to make sure your class doesn’t require
this. Your class can have as many parameterized constructors as you want for
the use of .NET clients, as long as you have one that requires none for the use
of COM clients.

The SDK utility 
RegAsm.exe makes reg-
istry entries telling COM 
where to find the server 
for the .NET class.

For a COM client to find the .NET object, we need to make the registry
entries that COM requires. You do this with a utility program, called
RegAsm.exe, that comes with the .NET Framework SDK. This program reads
the metadata in a .NET class and makes registry entries that point the COM
client to it. The sample code provides a batch file that does this for you. The
registry entries that it makes are shown in Figure 2-23. Notice that the COM
server for this operation is the intermediary DLL Mscoree.dll. The Class value
of the InProcServer32 key tells this DLL which .NET class to create and wrap,
and the Assembly entry tells it in which assembly it will find this class.

f02tp23Figure 2-23 Registry entries made by RegAsm.exe.

The sample code for this 
chapter contains a COM 
client using a .NET object.

A COM client accesses a .NET object as if it were a native COM object.
When the client calls CoCreateInstance to create the object, the registry
directs the request to the registered server, Mscoree.dll. This DLL inspects the
requested CLSID, reads the registry to find the .NET class to create, and rolls
a CCW on the fly based on that .NET class. The CCW converts native COM
types to their .NET equivalents—for example, BSTRs to .NET Strings—and
forwards them to the .NET object. It also converts the results back from .NET
into COM, including any errors. The sample code for this chapter contains a
COM client that accesses the shared time component assembly that we built
previously in this chapter.

A .NET developer could reasonably want some methods, interfaces, or
classes to be available to COM clients and others not to be. Therefore, .NET
provides a metadata attribute called System.Runtime.InteropServices.ComVis-

C02619182.fm  Page 61  Thursday, March 6, 2003  2:31 PM



62 Introducing Microsoft .NET, Third Edition

ibleAttribute. (The .NET Framework allows you to use the abbreviated form
of attribute class names, in this case ComVisible rather than ComVisibleAt-
tribute. I’ll be using the short version from now on.) You can use this attribute
on an assembly, a class, an interface, or an individual method. Items marked
with this attribute set to False will not be visible to COM. The default common
language runtime setting is True, so the absence of this attribute causes the
item to be visible to COM. However, the Visual Studio .NET default behavior
for assemblies is to set this attribute’s value to False in the AssemblyInfo.vb
file. Settings made lower in the hierarchy override those made higher up. In
the sample program, I set this attribute to True on my class, thereby making
it visible to COM, as shown in the code that follows. If I wanted everything in
the assembly visible to COM, I’d change it in AssemblyInfo.vb.

<System.Runtime.InteropServices.ComVisible(True)> Public Class Class1

Transactions in .NET
Transactions ensure the 
integrity of databases dur-
ing complex operations.

Transactions are necessary to protect the integrity of data in distributed sys-
tems. Suppose we’re writing an on-line bill paying application. Paying my
phone bill requires us to debit my account in some database and credit the
phone company’s account, probably in a different database and possibly on
a different machine. If the debit succeeds but the credit somehow fails, we
need to undo the debit, or money would be destroyed and the integrity of the
data in the system violated. We need to ensure that either both of these oper-
ations succeed or both of them fail. Performing both operations within a
transaction does exactly that. If both operations succeed, the transaction com-
mits and the new account values are saved. If either operation fails, the trans-
action aborts and all account values are rolled back to their original values.
(To learn more about transactions in general, I highly recommend Principles
of Transaction Processing by Philip A. Bernstein and Eric Newcomer, pub-
lished by Morgan Kaufmann, 1997.)

COM+ contains good 
automatic transaction 
support.

COM+, and its ancestor, Microsoft Transaction Server (MTS), provided
automatic support that made it easy for programmers to write objects that par-
ticipated in transactions. A programmer marked his objects administratively as
requiring a transaction. COM+ then automatically created one when the
object was activated. The object used COM+ Resource Managers, programs
such as Microsoft SQL Server that support the COM+ way of performing trans-
actions, to make changes to a database. The object then told COM+ whether
it was happy with the results. If all the objects participating in a transaction
were happy, COM+ committed the transaction, telling the Resource Managers
to save all their changes. If any object was unhappy, COM+ aborted the trans-

C02619182.fm  Page 62  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 63

action, telling the Resource Managers to discard the results of all objects’
operations, rolling back the state of the system to its original values. To learn
more about COM+’s implementation of transactions, read my book Under-
standing COM+ (Microsoft Press, 1999).

Native .NET objects can 
participate in COM+ 
transactions by using pre-
fabricated .NET Frame-
work functionality.

Native .NET objects can also participate in COM+ transactions. The .NET
Framework contains a layer of code that mediates between COM+ and native
.NET objects, encapsulated in the base class System.EnterpriseServices.Service-
dComponent. Objects that want to participate in COM+ transactions (or use
any other COM+ services, for that matter) must inherit from this class. Just as
with .NET components accessed from COM, your .NET class must contain a
default constructor (one that accepts no parameters), and you must sign it
with a strong name. You specify your component’s use of transactions by
marking the class with the attribute System.EnterpriseServices.Transaction.
The code in Listing 2-14 shows a class from my sample program that demon-
strates COM+ transactions in a native .NET object.

Imports System.EnterpriseServices

‘ Mark our class as requiring a transaction

<Transaction(TransactionOption.Required)> Public Class Class1

’ We need to inherit from ServicedComponent, which contains
’ code for interacting with COM+
Inherits ServicedComponent
’ Mark this method to use .NET’s automatic
’ transaction voting (optional) <AutoComplete()> Sub AutoCompleteMethod

()
(program logic omitted)

End Sub
End Class

Listing 2-14 COM+ transactions in a native .NET object.

The system base class 
registers your .NET 
component in the COM+ 
catalog.

Your .NET client creates a transactional object using the new operator,
exactly as for any other .NET object. When you do this, the ServicedCompo-
nent base class from which your object inherits first looks to see if the compo-
nent is registered with the COM+ catalog. If it’s not, the base class registers the
component with the COM+ catalog, creating a COM+ application for it and
adding the .NET class to it as a COM+ component, as shown in Figure 2-24.
The metadata in the .NET class specifies its transactional requirements, which
the base class uses to set the .NET component’s properties in the COM+ cata-
log. The base class sets not only the component’s use of transactions, but also
the other COM+ properties implied by the transaction, such as JIT activation

C02619182.fm  Page 63  Thursday, March 6, 2003  2:31 PM



64 Introducing Microsoft .NET, Third Edition

and synchronization. If you want your component to set these or other COM+
properties explicitly, you will find that the namespace System.EnterpriseSer-
vices contains many other attributes, such as ObjectPooling, with which you
decorate your class to specify its behavior. Once your object is created, your
client calls methods on it exactly as for any other .NET object. You can watch
the sample program’s transactional operations in Component Services, as
shown in Figure 2-25.

f02tp24Figure 2-24 Transactional .NET component installed in Component 
Services Explorer.

f02tp25Figure 2-25 .NET component committing and aborting transactions.

C02619182.fm  Page 64  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 65

A .NET transactional 
component can be config-
ured so that it votes on its 
transaction automatically 
by throwing or not throw-
ing an exception.

An object that participates in a transaction needs to vote on that transac-
tion’s outcome. Your .NET transactional object can do this in one of two ways.
The easiest way is to use the automatic transaction voting in .NET. You mark
your transactional-component method with the attribute System.EnterpriseSer-
vices.AutoComplete, as shown previously in Listing 2-14. In this case, a method
that returns without throwing an exception automatically calls SetComplete
internally, while a method that throws an exception to its caller automatically
calls SetAbort internally. If your methods are self-contained (as they should be
anyway for good transactional component design), and if they signal failure to
their clients by means of exceptions (as they should do anyway for good .NET
component design), this approach is probably the best choice.

A .NET transactional 
component can also vote 
on its transaction via 
explicit function calls.

Alternatively, your .NET object might want to vote on the outcome of its
transaction by means of explicit function calls. In COM+ and MTS, an object
fetched its context by calling the API function GetObjectContext and then
called a method on the context to indicate its transaction vote. A .NET object
will find its context on the system-provided object named System.Enterprise-
Services.ContextUtil. This object provides the commonly used methods Set-
Abort and SetComplete, and their somewhat less common siblings,
EnableCommit and DisableCommit. These methods set your object’s happi-
ness and doneness bits in exactly the same manner as they did in COM+. The
context also contains everything else you would expect to find in a COM+
context, such as the properties DeactivateOnReturn and MyTransactionVote,
which allow you to read and set these bits individually. If your object requires
several function calls to accomplish its work within a single transaction, or
you haven’t yet converted your error handling code to use structured excep-
tion handling, this choice is probably best for you.

Structured Exception Handling
Every program needs to 
handle errors that occur 
at run time.

Every program encounters errors during its run time. The program tries to do
something—open a file or create an object, for example—and the operation
fails for one reason or another. How does your program find out whether an
operation succeeded or failed, and how do you write code to handle the lat-
ter case?

Returning a special case 
value to indicate the fail-
ure of a function doesn’t 
work well.

The classic approach employed by a failed function is to return a special
case value that indicated that failure, say, Nothing (or NULL in C++). This
approach had three drawbacks. First, the programmer had to write code that
checked the function’s return value, and this often didn’t happen in the time
crunch that colors modern software development. Like seat belts or birth con-
trol, error-indicating return values only work if you use them. Errors didn’t get
trapped at their source but instead got propagated to higher levels of the

C02619182.fm  Page 65  Thursday, March 6, 2003  2:31 PM



66 Introducing Microsoft .NET, Third Edition

program. There they were much more difficult to unravel and sometimes got
masked until after a program shipped. Second, even if you were paying atten-
tion to it, the value of the error return code varied widely from one function to
another, increasing the potential for programming mistakes. CreateWindow, for
example, indicates a failure by returning NULL, CreateFile returns −1 , and in
16-bit Windows, LoadLibrary returned any value less than 32. To make things
even more chaotic, all COM-related functions return 0 as a success code and a
nonzero value to indicate different types of failures. Third, a function could
return only a single value to its caller, which didn’t give a debugger (human or
machine) very much information to work with in trying to understand and fix
the error.

No other technique works 
well across languages 
either.

Different languages tried other approaches to handling run-time errors.
Visual Basic used the On Error GoTo mechanism, which was and is a god-
awful kludge. GoTo has no place in modern software; it hasn’t for at least a
decade and maybe more. C++ and Java used a better mechanism, called
structured exception handling (SEH), which uses an object to carry informa-
tion about a failure and a handler code block to deal with that object. Unfor-
tunately, like most features of any pre–common language runtime language,
structured exception handling only worked within that particular language.
COM tried to provide rich, cross-language exception handling through the
ISupportErrorInfo and IErrorInfo interfaces, but this approach was difficult to
program and you were never sure whether your counterpart was following
the same rules you were.

.NET provides structured 
exception handling as a 
fundamental feature avail-
able in and between all 
languages.

The .NET common language runtime provides structured exception
handling, similar to that in C++ or Java, as a fundamental feature available to
all languages. This architecture solves many of the problems that have
dogged error handling in the past. An unhandled exception will shut down
your application, so you can’t ignore one during development. A function
that is reporting a failure places its descriptive information in a .NET object,
so it can contain any amount of information you’d like to report. Since the
infrastructure is built into the runtime, you have to write very little code to
take advantage of it. And as with all runtime functionality, .NET structured
exception handling works well across all languages.

I’ve written a sample program that demonstrates some of the structured
exception handling features in the common language runtime. Figure 2-26
shows a picture of it. You can download the code from the book’s Web site
and work along with me.

C02619182.fm  Page 66  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 67

f02tp26Figure 2-26 Sample program demonstrating structured exception handling.

A client program uses a 
Try-Catch block to specify 
its exception handling 
code.

A client program about to perform an operation that it thinks might fail
sets up an exception handler block in its code, using the keywords Try and
Catch, as shown in the Visual Basic .NET code in Listing 2-15. The exact syn-
tax of structured exception handling varies from one language to another, but
all the ones I’ve seen so far are pretty close to this.

Protected Sub btnHandled_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

’ Entering this block of code writes an exception handler onto
’ the stack.

Try

’ Perform an operation that we know will cause an exception.

Dim foo As System.IO.FileStream
foo = System.IO.File.Open(“Non-existent file", IO.FileMode.Open)
’ When an exception is thrown at a lower level of
’ code, this handler block catches it.

Catch x As System.Exception

’ Perform whatever cleanup we want to do in response
’ to the exception that we caught.

MessageBox.Show(x.Message)
End Try

End Sub

Listing 2-15 Client application code showing structured exception handling.

C02619182.fm  Page 67  Thursday, March 6, 2003  2:31 PM



68 Introducing Microsoft .NET, Third Edition

When program execution enters the Try block, the common language
runtime writes an exception handler to the stack, as shown in Figure 2-27.
When a called function lower down on the stack throws an exception, as
described in the next paragraph, the runtime exception-handling mechanism
starts examining the stack upward until it finds an exception handler. The
stack is then unwound (all objects on it discarded), and control transfers to
the exception handler. An exception can come from any depth in the call
stack. In the sample program, I deliberately open a file that I know does not
exist. The system method File.Open throws an exception, and my client
catches it and displays information to the user about what has happened.

f02tp27Figure 2-27 Structured exception handling diagram.

A piece of code that wants 
to throw an exception cre-
ates a System.Exception 
object, fills out its fields, 
and calls the system func-
tion Throw.

Any code that wants to can throw an exception. The common language
runtime uses SEH for all of its error reporting, as shown in the previous exam-
ple. For consistency, you therefore probably want to use SEH to signal errors
from one part of your application to another. A piece of code that wants to
throw an exception creates a new object of type System.Exception. You set
the properties of this object to whatever you want them to be to describe the
exception situation to any interested catchers. The common language runtime
automatically includes a stack trace so that the exception handler code can
tell exactly where the exception originated. Then you throw the exception
using the keyword Throw, as shown in the code in Listing 2-16. This call tells
the system to start examining the stack for handlers. The exception handler
can live any number of levels above the exception thrower in the call stack.

 1. Client code enters Try 
block

Try                          
 call SomeFunc 
Catch x As Exception      
 clean up End 
Catch

 2. Exception 
handler written 
onto stack

 7. Control 
transferred to 
Catch block. 3. Function 

called

 4. SomeFunc encounters 
error conditions, creates 
and throws exception

Stack (grows down)

Exception Handler

 6. Exception 
handler 
found. Stack 
unwound; 
parameters 
discarded.

Parameters passed to 
SomeFunc

 5. Common language 
runtime searches stack 
for exception handler

C02619182.fm  Page 68  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 69

Public Function BottomFunction() As String

’ Create a new Exception object, setting its “Message” property,
’ which can only be done in the constructor.

Dim MyException _
As New Exception(“Exception thrown by BottomFunction”)

’ Set the new Exception’s Source property, which can be
’ done anywhere.

MyException.Source = _
“Introducing Microsoft .NET Chapter 2 ExceptionComponent"

’ Throw the exception.

Throw MyException

End Function

Listing 2-16 Throwing an exception in SEH.

You can enforce cleanup 
from an exception using a 
Try-Finally block.

When the common language runtime transfers control to an exception
handler, the program stack between the thrower and the handler is discarded,
as shown previously in Figure 2-27. Any objects or object references that
existed on that stack become garbage. Because of the .NET automatic gar-
bage collection, you don’t have to worry about objects being leaked away,
which was a big concern when using C++ native exception handling. How-
ever, having the objects discarded in this manner means that you don’t get a
chance to call the Dispose methods of any that needed deterministic finaliza-
tion. Their finalizers will be called eventually at the next garbage collection,
but that might not be soon enough. You can handle this situation with a Try-
Finally handler, as shown in Listing 2-17. Code in a Finally block is executed
as the stack is unwound, so you can put your cleanup code there. You can
use both a Catch and a Finally block on the same Try if you want to.

You can throw and catch 
many different types of 
exceptions.

SEH becomes even more powerful if throwers throw different types of
exceptions to indicate different types of program failure. You do this by deriv-
ing your own class from the generic base class System.Exception. You can add
any additional methods or properties to your exception class that you think
would explain the situation to any potential catchers. In the example shown
at the start of this section, when I attempted to open the nonexistent file, the
system threw an exception of type FileNotFoundException, which contained
the name of the file that it couldn’t find. Even if you don’t add anything else,
the mere presence of a particular type of exception will indicate what type of
failure has taken place. I wrote the handler shown in Listing 2-15 to catch any

C02619182.fm  Page 69  Thursday, March 6, 2003  2:31 PM



70 Introducing Microsoft .NET, Third Edition

type of exception. If I wanted the handler to catch only exceptions of the type
FileNotFoundException, I would change Catch x As System.Exception to
Catch x As System.IO.FileNotFoundException. The common language runt-
ime, when examining the stack, matches the type of exception thrown to the
type specified in the Catch block, transferring control only if the type thrown
matches exactly or is derived from the specified Catch type. A Try block can
have any number of Catch handlers attached to it. The common language
runtime will search them in the order in which they appear, so you want to
put the most specific ones first.

Public Function MiddleFunction() As String

’ Entering this block causes a handler to be written onto the stack.

Try
BottomFunction()

’ The code in this Finally handler is executed whenever
’ execution leaves the Try block for any reason. We care most
’ about the case in which BottomFunction throws an exception
’ and the stack is unwound. Without the Finally handler, we’d
’ have no chance to clean up from that exception.

Finally
MessageBox.Show(“Finally handler in MiddleFunction”)

End Try

End Function

Listing 2-17 Finally handler in structured error handling.

Tips from the Trenches
My customers report that they get their best use of exception han-
dling when their code in any given place catches only the types of
exceptions that it knows how to handle. Exception handling code
shouldn’t merely absorb all System.Exception objects as this sample
does. However, they like putting a handler for all exceptions at the
very top of their program, enclosing the Application.Run call in
their Main function. An exception reaching that handler means that
it somehow escaped all the lower handlers and would otherwise
cause the program to crash. In this handler, they log the exception
to a file or send e-mail, save any open work as best they can, and
terminate peacefully. The stack trace in the exception shows
exactly where it originated, which makes it much easier to fix.

C02619182.fm  Page 70  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 71

Code Access Security
Customers generally feel 
that software purchased 
from a store is safe for 
them to run.

At the beginning of the PC era, very few users installed and ran code that they
hadn’t purchased from a store. The fact that a manufacturer had gotten shelf
space at CompUSA or the late Egghead Software pretty much assured a cus-
tomer that the software in the box didn’t contain a malicious virus, as no
nefarious schemer could afford that much marketing overhead. And, like
Tylenol, the shrink-wrap on the package ensured a customer that it hadn’t
been tampered with since the manufacturer shipped it. While the software
could and probably did have bugs that would occasionally cause problems,
you were fairly comfortable that it wouldn’t demolish your unbacked-up hard
drive just for the pleasure of hearing you scream.

However, most software 
today now comes from 
the Web.

This security model doesn’t work well today because most software
doesn’t come from a store any more. You install some large packages, like
Microsoft Office or Visual Studio, from a CD, although I wonder how much
longer even that will last as high-speed Internet connections proliferate. But
what about updates to, say, Internet Explorer? A new game based on Tetris?
Vendors love distributing software over the Web because it’s cheaper and eas-
ier than cramming it through a retail channel, and consumers like it for the
convenience and lower prices. And Web code isn’t limited to what you’ve
conventionally thought of as a software application. Web pages contain
scripts that do various things, not all of them good. Even Office documents
that people send you by e-mail can contain scripting macros. Numerically,
except for perhaps the operating system, your computer probably contains
more code functions that you downloaded from the Web than you installed
from a CD you purchased, and the ratio is only going to increase.

It is essentially impossible 
for a user to know when 
code from the Web is safe 
and when it isn’t.

While distributing software over the Web is great from an entrepreneur-
ial standpoint, it raises security problems that we haven’t had before. It’s now
much easier for a malicious person to spread evil through viruses. It seems
that not a month goes by without some new virus alert on CNN, so the prob-
lem is obviously bad enough to regularly attract the attention of mainstream
media. Security experts tell you to run only code sent by people you know
well, but who else is an e-mail virus going to propagate to? And how can we
try software from companies we’ve never heard of? It is essentially impossible
for a user to know when code downloaded from the Web is safe and when it
isn’t. Even trusted and knowledgeable users can damage systems when they
run malicious or buggy software. You could clamp down and not let your
users run any code that your IT department hasn’t personally installed. Try it
for a day and see how much work you get done. We’ve become dependent
on Web code to a degree you won’t believe until you try to live without it.
The only thing that’s kept society as we know it from collapsing is the relative

C02619182.fm  Page 71  Thursday, March 6, 2003  2:31 PM



72 Introducing Microsoft .NET, Third Edition

scarcity of people with the combination of malicious inclination and technical
skills to cause trouble.

The Authenticode system 
doesn’t protect you from 
harm; it merely identifies 
the person harming you.

Microsoft’s first attempt to make Web code safe was its Authenticode
system, introduced with the ActiveX SDK in 1996. Authenticode allowed man-
ufacturers to attach a digital signature to downloaded controls so that the user
would have some degree of certainty that the control really was coming from
the person who said it was and that it hadn’t been tampered with since it was
signed. Authenticode worked fairly well to guarantee that the latest proposed
update to Internet Explorer really did come from Microsoft and not some
malicious spoofer. But Microsoft tried to reproduce the security conditions
present in a retail store, not realizing that wasn’t sufficient in a modern Inter-
net world. The cursory examination required to get a digital certificate didn’t
assure a purchaser that a vendor wasn’t malicious (like idiots, VeriSign gave
me one, for only $20), as the presence of a vendor’s product on a store shelf
or a mail-order catalog more or less did. Worst of all, Authenticode was an all-
or-nothing deal. It told you with some degree of certainty who the code came
from, but your only choice was to install it or not. Once the code was on your
system, there was no way to keep it from harming you. Authenticode isn’t a
security system; it’s an accountability system. It doesn’t keep code from harm-
ing you, it just ensures that you know who to kill if it does.

We want to specify the 
levels of privilege that 
individual pieces of code 
can have, as we do with 
the humans in our lives.

What we really want is a way to restrict the operations that individual
pieces of code can perform on the basis of the level of trust that we have in
that code. You allow different people in your life to have different levels of
access to your resources according to your level of trust in them: a (current)
spouse can borrow your credit card; a friend can borrow your older car; a
neighbor can borrow your garden hose. We want our operating system to
support the same sort of distinctions. For example, we might want the oper-
ating system to enforce a restriction that a control we download from the
Internet can access our user interface but can’t access files on our disk, unless
it comes from a small set of vendors who we’ve learned to trust. The Win32
operating system didn’t support this type of functionality, as it wasn’t origi-
nally designed for this purpose. But now we’re in the arms of the common
language runtime, which is.

The .NET common lan-
guage runtime provides 
code access security at 
run time on a per-assem-
bly basis.

The .NET common language runtime provides code access security,
which allows an administrator to specify the privileges that each managed
code assembly has, based on our degree of trust, if any, in that assembly.
When managed code makes a runtime call to access a protected resource—

C02619182.fm  Page 72  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 73

say, opening a file or accessing Active Directory—the runtime checks to see
whether the administrator has granted that privilege to that assembly, as
shown in Figure 2-28. The common language runtime walks all the way to
the top of the call stack when performing this check so that an untrusted top-
level assembly can’t bypass the security system by employing trusted hench-
men lower down. (If a nun attempts to pick your daughter up from school,
you still want the teacher to check that you sent her, right?) Even though this
checking slows down access to a protected resource, there’s no other good
way to avoid leaving a security hole. While the common language runtime
can’t govern the actions of unmanaged code, such as a COM object, which
deals directly with the Win32 operating system instead of going through the
runtime, the privilege of accessing unmanaged code can be granted or denied
by the administrator.

f02tp28Figure 2-28 Access check in common language runtime code access
security.

The administrator sets the security policy, a configurable set of rules that
says which assemblies are and which aren’t allowed to perform which types
of operations. These permissions can be set at three levels: enterprise,
machine, and user. A lower-level setting can tighten restrictions placed by set-
tings at a higher level, but not loosen them. For example, if the machine-level
permission allows a particular assembly to open a file, a user-level permission
can deny the assembly that privilege, but not grant it.

Method in 
Assembly A4 
demands a 
permission P

Call stack 
grows down

Each assembly has a set of 
corresponding grants

P is compared with 
grants of all callers on 
the stack above A4

Assembly A1

Assembly A2

Assembly A3

Assembly A4
P

P

P

P

G1

G2

G3

G4

C02619182.fm  Page 73  Thursday, March 6, 2003  2:31 PM



74 Introducing Microsoft .NET, Third Edition

The administrator sets the 
code access security pol-
icy by editing XML-based 
configuration files.

An administrator sets the security policy by editing XML-based configu-
ration files stored on a machine’s disk. Any program that can modify an XML
file can edit these files, so installation scripts are easy to write. Human admin-
istrators and developers will want to use the .NET Framework Configuration
utility program mscorcfg.msc. This utility hadn’t yet appeared when I wrote
the first edition of this book, and I said some rather strong things about the
lack of and the crying need for such a tool. Fortunately it now exists, whether
because of what I wrote or despite it—or whether the development team
even read it—I’m not sure. You can see the location of the security configu-
ration files themselves in Figure 2-29.

f02tp29Figure 2-29 Security configuration files in the configuration utility.

The administrator con-
structs permission sets—
lists of privileges that are 
granted and revoked as a 
group.

Rather than grant individual permissions to various applications, an
administrator creates permission sets. These are (for once) exactly what their
name implies—lists of things that you are allowed to do that can be granted
or revoked as a unit to an assembly. The .NET Framework contains a built-in
selection of permission sets, running from Full Trust (an assembly is allowed
to do anything at all) to Nothing (an assembly is forbidden to do anything at
all, including run), with several intermediate steps at permission levels that
Microsoft thought users would find handy. The configuration tool prevents
you from modifying the preconfigured sets, but it does allow you to make
copies and modify the copies.

Each permission set consists of zero or more permissions. A permission
is the right to use a logical subdivision of system functionality, for example,
File Dialog or Environment Variables. Figure 2-30 shows the configuration tool
dialog box allowing you to add or remove a permission to a permission set.

C02619182.fm  Page 74  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 75

f02tp30Figure 2-30 Assigning permissions to a permission set.

A permission set contains 
permissions, and a per-
mission contains finer-
grained properties.

Each permission in turn supports one or more properties, which are
finer-grained levels of permitted functionality that can be granted or revoked.
For example, the File Dialog permission contains properties that allow an
administrator to grant access to the Open dialog, the Save dialog, both, or nei-
ther. Figures 2-31 and 2-32 show the dialog boxes for setting the properties of
the File Dialog permission and the ambiguously-named Security permission.

f02tp31Figure 2-31 Setting properties of a single permission.

C02619182.fm  Page 75  Thursday, March 6, 2003  2:31 PM



76 Introducing Microsoft .NET, Third Edition

f02tp32Figure 2-32 Setting properties of a different permission.

An administrator assigns 
assemblies to various 
code groups based on 
membership conditions 
such as where the code 
came from and whose dig-
ital signature it contains.

Now that you understand permission sets, let’s look at how the admin-
istrator assigns a permission set to an assembly. A code-privilege administra-
tor can assign a permission set to a specific assembly just as a log-in
administrator can assign specific log-in privileges to an individual user. Both
of these techniques, however, become unwieldy very quickly in production
environments. Most log-in administrators set up user groups (data entry
workers, officers, auditors, and so on), the members of which share a com-
mon level of privilege, and move individual users into and out of the groups.
In a similar manner, most code-privilege administrators will set up groups of
assemblies, known as code groups, and assign permission sets to these
groups. The main difference between a log-in administrator’s task and a
code-privilege administrator’s task is that the former will deal with each user’s
group membership manually, as new users come onto the system infre-
quently. Because of the way code is downloaded from the Web, we can’t rely
on a human to make a trust decision every time our browser encounters a
new code assembly. A code-privilege administrator, therefore, sets up rules,
known as membership conditions, that determine how assemblies are
assigned to the various code groups. A membership condition will usually
include the program zone that an assembly came from, for example, My Com-
puter, Internet, Intranet, and so on. A membership condition can also include
such information as the strong name of the assembly (“our developers wrote
it”), or the public key with which it can be deciphered (and hence the private
key with which it must have been signed). You set membership criteria using
the .NET Framework Configuration tool, setting the properties of a code
group, as shown in Figure 2-33.

C02619182.fm  Page 76  Thursday, March 6, 2003  2:31 PM



Chapter 2 .NET Objects 77

The administrator then 
assigns a permission set 
to each code group.

Once you’ve set your membership criteria, you choose a permission set
for members of that group, as shown in Figure 2-34. By default, .NET pro-
vides full trust to any assembly signed with Microsoft’s strong name. I will be
curious to see how many customers like this setting and how many do not.

f02tp33Figure 2-33 Setting code group membership conditions.

f02tp34Figure 2-34 Assigning a permission set to a code group.

C02619182.fm  Page 77  Thursday, March 6, 2003  2:31 PM



78 Introducing Microsoft .NET, Third Edition

If an assembly belongs to 
more than one code 
group, its permission set 
is the sum of the permis-
sion sets of the groups to 
which it belongs.

When the common language runtime loads an assembly at run time, it
figures out which code group the assembly belongs to by checking its mem-
bership conditions. It is common for an application to belong to more than
one code group. For example, if I ran Microsoft Money add-ons from the
Web, they would belong to both the Microsoft group (because I can decode
its signature with Microsoft’s public key) and the Internet Zone group
(because I ran them from the Internet). When code belongs to more than one
group, the permission sets for each group are added together, and the result-
ing (generally larger) permission set is applied to the application.

The common language 
runtime contains many 
functions and objects for 
interaction with the code-
access security system 
programmatically.

While most of the effort involved in code access security falls on system
administrators, programmers will occasionally need to write code that deals
with the code-access security system. For example, a programmer might want
to add metadata attributes to an assembly specifying the permission set that it
needs to get its work done. This doesn’t affect the permission level it will get,
as that’s controlled by the administrative settings I’ve just described, but it will
allow the common language runtime to fail its load immediately instead of
waiting for the assembly to try an operation that it’s not allowed to do. A pro-
grammer might also want to read the level of permission that an assembly
actually has been granted so that the program can inform the user or an
administrator what it’s missing. The common language runtime contains
many functions and objects that allow programmers to write code that inter-
acts with the code-access security system. Even a cursory examination of
these functions and objects is far beyond the scope of this book, but you
should know that they exist, that you can work with them if you want to, and
that you almost never will want to. If you set the administrative permissions
the way I’ve just described, the right assemblies will be able to do the right
things, and the wrong assemblies will be barred from doing the wrong things,
and anyone who has time to write code for micromanaging operations within
those criteria is welcome to.

C02619182.fm  Page 78  Thursday, March 6, 2003  2:31 PM


